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The Chapman–Enskog expansion is generalized in order to derive constitutive re-
lations for flows of inelastically colliding spheres in three dimensions – to Burnett
order. To this end, the pertinent (nonlinear) Boltzmann equation is perturbatively
solved by performing a (double) expansion in the Knudsen number and the degree
of inelasticity. One of the results is that the normal stress differences and the ‘temper-
ature anisotropy’, characterizing granular fluids, are Burnett effects. The constitutive
relations derived in this work differ, both qualitatively and quantitatively, from those
obtained in previous studies. In particular, the Navier–Stokes (order) terms have a
different dependence on the degree of inelasticity and the number density than in
previously derived constitutive relations; for instance, the expression for the heat
flux contains a term which is proportional to ε∇ log n, where ε is a measure of the
degree of inelasticity and n denotes the number density. This contribution to the
heat flux is of zeroth order in the density; a similar term, i.e. one that is propor-
tional to ε∇n, has been previously obtained by using the Enskog correction but
this term is O(n) and it vanishes in the Boltzmann limit. These discrepancies are
resolved by an analysis of the Chapman–Enskog and Grad expansions, pertaining
to granular flows, which reveals that the quasi-microscopic rate of decay of the tem-
perature, which has not been taken into account heretofore, provides an important
scale that affects the constitutive relations. Some (minor) quantitative differences be-
tween our results and previous ones exist as well. These are due to the fact that
we take into account an isotropic correction to the leading Maxwellian distribu-
tion, which has not been considered before, and also because we consider the full
dependence of the corrections to the Maxwellian distribution on the (fluctuating)
speed.

1. Introduction
Owing to the recent significant increase in interest in granular systems in the

scientific community, a paper in this field no longer needs to explain the impor-
tance of granular materials and their wide range of applicability. Part of the recent
work in this field (see Herrmann 1992; Hutter & Rajagopal 1994; Jaeger, Nagel &
Behringer 1996 and references therein for recent reviews) deals with the quasi-static
flow regime, which is usually characterized by relatively large densities, relatively
prolonged contacts among the grains and more than two-body interactions. The
‘opposite’ limit, in which the particle interactions are binary collisions (characterized
by short durations), is coined ‘rapid granular flow’ (cf. the review by Campbell 1990
and references therein). It is known that a given system may contain domains in
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which the flow is quasi-static and regions in which it is ‘rapid’ (Campbell 1990;
Herrmann 1992; Hutter & Rajagopal 1994; Jaeger et al. 1996). Equations derived
for rapid granular flows may be of some use in the quasi-static regime since one of
the major factors that needs to be taken into account is the dissipative nature of
the interparticle interactions, a feature which is common to all regimes of granular
flows.

The present paper deals with rapid granular flows. As noticed in numerous pre-
vious studies, e.g. in Lun et al. (1984); Jenkins & Richman (1985a,b, 1988); Haff
(1986); Campbell (1990); Lun (1991), the similarity between granular materials in
a state of rapid flow and the classical picture of molecular gases suggests that
methods used in the realm of statistical mechanics of gases may be relevant to the
analysis of rapid granular flows. The Boltzmann equation and its (Enskog) gener-
alization to (moderately) dense flows have been employed (Lun et al. 1984; Jenkins
& Richman 1985a,b, 1988; Boyle & Massoudi 1990 and Lun 1991) in order to
obtain constitutive relations for granular systems. Most of the kinetic studies do
not involve a direct and/or systematic analysis of the pertinent Boltzmann equa-
tion (see however Goldshtein & Shapiro 1995 for a direct analysis). Instead, an
ansatz for the form of the single-particle distribution function has been substituted
in the (Enskog) equations of motion obeyed by the low moments (corresponding
to the mass density, momentum density and kinetic energy density) of the dis-
tribution function. The Grad method of moments (Grad 1949), which involves a
closure to render it useful, has also been employed in this field (Jenkins & Richman
1985a).

One of the aims of the present paper to show how a systematic perturbative solu-
tion of the Boltzmann equation for inelastically colliding particles can be obtained;
more specifically, we study the case of a monodisperse collection of smooth spheres
interacting by binary collisions, characterized by a fixed coefficient of normal resti-
tution. The expansion of the single-particle distribution is used to derive constitutive
relations for the above system and draw some additional conclusions.

The method employed below is a generalization of the Chapman–Enskog expansion
(Kogan 1969; Chapman & Cowling 1970; Harris 1971; Cercignani 1975; Goldhirsch
& Sela 1996 and Sela, Goldhirsch & Noskowicz 1996). The need for such a gener-
alization has been explained in previous publications (Goldhirsch & Sela 1996 and
Sela et al. 1996) and we shall only briefly repeat the explanation. The standard
Chapman–Enskog expansion for molecular systems employs the (time-independent,
exact) equilibrium solution of the Boltzmann equation as its zeroth order; shearing,
temperature gradients and the like are considered as perturbations and the zeroth-
order solution corresponds to an unforced, or free, gas. Such a zeroth-order solution
does not exist for granular flows since in a free granular system the kinetic energy
decays, due to the inelasticity of the collisions, to an asymptotic state of zero granular
temperature – the only unforced steady-state of such a flow. The latter state is clearly
an inadequate candidate for a ‘zeroth-order solution’ when one is interested in a
forced system at finite granular temperature. In previous studies (Goldhirsch & Sela
1996 and Sela et al. 1996) we have shown how a perturbative approach to solving
the Boltzmann equation can be designed, in spite of the above problem. The idea
underlying the resolution of this problem is conveniently demonstrated in the case
of a simple steady shear flow. In this case the increase in the granular temperature
(heating) by shear is compensated by the energy losses (cooling) due to the inelas-
ticity of the collisions. The equality of the rates of heating by shear and cooling by
inelasticity (in a steady state) can be shown (Haff 1986; Goldhirsch & Sela 1996
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and Sela et al. 1996) to yield: T ∝ γ2`2/ε where T is the granular temperature,
` is the mean free path, γ is the shear rate and ε (which equals 1 − e2, where e
is the coefficient of normal restitution) is a measure of the degree of inelasticity.
One observes that the double limit ε → 0 and γ → 0, in which one keeps the ratio
γ2/ε fixed, corresponds to an equilibrium state (whose temperature is proportional
to the ratio γ2/ε). This limit is not singular: the energy loss in a given collision is
proportional to ε and (local) equilibration occurs on the time scale of a few colli-
sions (mean free times). This observation has served as the basis of a perturbative
expansion (Sela et al. 1996) of the Boltzmann equation for a simply sheared granular
system in powers of ε1/2 around the equilibrium solution (as a ‘zeroth-order’ solu-
tion). This approach has been further generalized for the case of a time-dependent
homogeneous (two-dimensional) granular system (Goldhirsch & Sela 1996). Since
a granular system can ‘reach’ an equilibrium state when both γ and ε vanish, it is
possible to define a double perturbative expansion in which both γ (properly non-
dimensionalized, see below) and ε serve as small parameters. The latter expansion
reduces to that corresponding to the above steady-state solution in the appropriate
limit. One of the major results obtained from Goldhirsch & Sela (1996) is a qual-
itative and quantitative understanding of the normal stress differences in granular
systems; it turns out that this property of granular systems is a Burnett effect and
it corresponds to a similar property of molecular systems, the only difference being
of quantitative nature: the Burnett effect in granular systems is about 20 orders of
magnitude larger than in simple molecular systems and it is observable (Goldhirsch
& Sela 1996).

The study presented below is a further generalization of the above investiga-
tions; an expansion in which the Knudsen number and the degree of inelasticity
are the small parameters is performed for a three-dimensional system of smooth
spheres and carried out to Burnett order. This expansion yields several results which
are different from what has been obtained heretofore: (i) The heat flux contains
a term of order ε which is proportional to ∇ log n, where n is the number den-
sity; a similar term appears in previous works (Jenkins & Richman 1985a; Boyle
& Massoudi 1990 and Lun 1991) either at higher orders in ε or as a result of
using the Enskog correction (beyond the Boltzmann level of description) and then
it is proportional to ∇n and not ∇ log n. (ii) An O(ε) term is obtained in the ex-
pression for the coefficient of viscosity whereas in the previous work mentioned
above the lowest-order ε-dependent term in the expression for the viscosity is O(ε2).
(iii) The O(ε) term in the expression for the heat conductivity is positive whereas
previous work produced a negative term. In addition, some prefactors are different
as well. The reason for the discrepancy between the constitutive relations obtained
in the present work and those obtained in previous studies is shown below to be
related to the fact the dynamics of the granular temperature field defines a rel-
evant quasi-microscopic (or short) time scale. A careful analysis of the equations
derived in previous studies, in particular by employing Grad’s method of moments,
reveals that when the correct dynamics of the temperature is taken into account,
one obtains results which are in agreement with our findings; some remaining minor
quantitative differences are explained below. We wish to stress that some of the
pioneering studies of rapid granular flows may not have been intended to be accu-
rate to O(ε); these important works led the way to the rational approach presented
here.

The structure of the paper is as follows: §2 presents the system to be studied along
with the pertinent Boltzmann equation and some general results. The perturbative
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expansion is set up in §3. The resulting constitutive relations, to Burnett order, are
presented in §3.5, where the normal stress difference is shown to be a Burnett effect.
Section 4 provides an explanation for the discrepancies between our results and
previous ones. Concluding remarks, as well as comments concerning necessary future
work, are presented in §5. Many of the technical details are relegated to a set of
Appendices. Appendices A, D and E are not printed here but are available from the
authors or the JFM Editorial Office.

2. Formulation of the problem
The present article deals with monodisperse collections of smooth inelastically

colliding spheres of diameter d, whose collisions are characterized by a constant
coefficient of normal restitution, e, which satisfies 0 < e 6 1. The binary collision
between spheres labelled i and j results in the following velocity transformation:

vi = v′i −
1 + e

2
(k̂ · v′ij)k̂, (1)

where (v′i, v
′
j) are the precollisional velocities, (vi, vj) are the corresponding postcolli-

sional velocities, v′ij ≡ v′i− v′j and k̂ is a unit vector pointing from the centre of sphere
i to that of sphere j at the moment of contact.

The properties of the system (assuming it is dilute enough) are assumed to be
described by the Boltzmann equation (Grad 1949; Kogan 1969; Chapman & Cowling
1970; Harris 1971; Cercignani 1975; Goldshtein & Shapiro 1995; Sela et al. 1996 and
Goldhirsch & Sela 1996)

∂f

∂t
+ v1 · ∇f = d2

∫
k̂·v12>0

dv2dk̂(k̂ · v12)

(
1

e2
f(v′1)f(v′2)− f(v1)f(v2)

)
, (2)

where f ≡ f(v1, r, t) is the single-particle distribution function, ∇ is a gradient with
respect to the spatial coordinate r and the other variables are defined in (1) and the
text following it. The dependence of f on the spatial coordinates and on time is not
explicitly spelled out in (2). Notice that in addition to the explicit dependence of (2)
on e, it also implicitly depends on e through the relation between the postcollisional
and precollisional velocities.

The hydrodynamic variables considered below are (Grad 1949; Kogan 1969; Chap-
man & Cowling 1970; Harris 1971 and Cercignani 1975): the number density field,
n(r, t), the macroscopic velocity field, V (r, t), and the granular temperature field,
Θ(r, t). These quantities are given by:

n(r, t) ≡
∫

dvf(v, r, t), (3)

V (r, t) ≡ 1

n

∫
dvvf(v, r, t), (4)

and

Θ(r, t) ≡ 1

n

∫
dv(v − V )2f(v, r, t). (5)

respectively; also 1/n denotes 1/n(r, t). In this article the mass, m, of a particle, is
normalized to unity. The granular temperature, defined in (5) (without the factor
1
3

often used in the literature), is a measure of the squared fluctuating velocity.
This definition does not contradict the common notion of a tensorial granular
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temperature (see Jenkins & Richman 1988 and Campbell 1990) which is a way
of expressing the fact that the stress tensor in sheared flows is anisotropic. This
anisotropy is one of the results of our analysis and one does not have to use it
as input (see below). The equations of motion for the above-defined macroscopic
field variables can be formally derived by multiplying the Boltzmann equation, (2),
by 1, v1 and v2

1 respectively, and integrating over v1. A standard procedure (which
employs the symmetry properties of the collision integral on the right-hand side of
the Boltzmann equation) yields equations of motion for the hydrodynamic fields (Lun
et al. 1984; Jenkins & Richman 1985a,b, 1988; Boyle & Massoudi 1990 and Lun
1991):

Dn

Dt
+ n

∂Vi

∂ri
= 0, (6)

n
DVi
Dt

+
∂Pij

∂rj
= 0, (7)

n
DΘ

Dt
+ 2

∂Vi

∂rj
Pij + 2

∂Qj

∂rj
= −nΓ , (8)

where u ≡ v − V is the fluctuating velocity, Pij ≡ n〈uiuj〉 is the stress tensor, Qj ≡
1
2
n〈u2uj〉 is the heat flux vector, 〈 〉 is an average with respect to f, D/Dt ≡ ∂/∂t+V ·∇

is the material derivative and Γ , which accounts for the energy loss in the (inelastic)
collisions, is given by

Γ ≡ π(1− e2)d2

8n

∫
dv1dv2v

3
12f(v1)f(v2). (9)

Notice that (6)–(8) are exact consequences of the Boltzmann equation. The mi-
croscopic details of the interparticle interactions affect the values of the averages
〈uiuj〉, 〈u2ui〉 and Γ . A standard method for obtaining these quantities for molec-
ular gases is the Chapman–Enskog expansion (Kogan 1969; Chapman & Cowl-
ing 1970; Harris 1971 and Cercignani 1975). It involves a perturbative solution
of the Boltzmann equation in powers of the spatial gradients of the hydrody-
namic fields; the zeroth-order solution yields the Euler equations, the first order
gives rise to the Navier–Stokes equations, the second order begets the Burnett
equations, etc. The Chapman–Enskog method is tailored for systems that have a
stationary homogeneous (equilibrium) solution, which serves as a zeroth-order so-
lution of the expansion. Since granular systems do not possess such equilibrium-
like solutions (an unforced homogeneous system is one in which energy decays
due to the inelasticity of the collisions) the Chapman–Enskog technique is not di-
rectly applicable to such systems; as shown below, an appropriate generalization
of the Chapman–Enskog expansion can be employed in the realm of granular sys-
tems.

3. Method of solution
The method of solution employed in this work is a generalization of the Chapman–

Enskog expansion. The classical Chapman–Enskog expansion assumes the smallness
of the Knudsen number, K ≡ `/L where ` is the mean free path given by ` =
1/(πnd2) and L is a macroscopic length scale, i.e. the length scale which is resolved
by hydrodynamics, not necessarily the system size. Here we define a second small
parameter, ε, given by ε ≡ 1 − e2, which is a measure of the inelasticity and we
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(formally) assume here: ε � 1. Next, we perform a rescaling of the Boltzmann
equation, as follows: spatial gradients are rescaled as ∇ ≡ (1/L)∇̃, the rescaled

fluctuating velocity is ũ ≡ (3/(2Θ))1/2(v − V ) and f ≡ n
(
3/(2Θ)

)3/2
f̃(ũ). In terms of

the rescaled quantities, the Boltzmann equation assumes the form

D̃f̃ + f̃D̃
(
log n− 3

2
logΘ

)
=

1

π

∫
k̂·ũ12>0

dũ2dk̂(k̂ · ũ12)

(
1

e2
f̃(ũ′1)f̃(ũ′2)− f̃(ũ1)f̃(ũ2)

)
≡ B̃(f̃, f̃, e), (10)

where

D̃ ≡ K
(

3

2Θ

)1/2(
L
∂

∂t
+ v · ∇̃

)
. (11)

Notice that D̃ is not a material derivative since the velocity v is not the hydrodynamic
velocity but rather the particle’s velocity. Clearly, the double limit ε→ 0 and K → 0,
with constant number density, corresponds to a homogeneous elastically colliding
collection of spheres for which the distribution function is Maxwellian. Hence, for
K � 1 and ε � 1, f̃ can be expressed as follows: f̃(ũ) = f̃0(ũ)(1 + Φ) where
f̃0(ũ) = π−3/2e−ũ

2

and Φ is considered to be a ‘small’ perturbation. Employing the
above form of f̃ and making use of ũ2 = 3(v − V )2/2Θ it follows that (10) can be
transformed to

(1+Φ)

(
D̃ log n+ 2

(
3

2Θ

)1/2

ũiD̃Vi +
(
ũ2 − 3

2

)
D̃ logΘ

)
+D̃Φ =

1

f̃0

B̃(f̃, f̃, e). (12)

The following relations follow directly from (6)–(8) and the definition of D̃:

D̃ log n = K

(
ũi
∂ log n

∂r̃i
−
(

3

2Θ

)1/2
∂Vi

∂r̃i

)
, (13)

D̃Vi = K

(
ũj
∂Vi

∂r̃j
− 1

n

(
3

2Θ

)
∂Pij

∂r̃j

)
, (14)

and

D̃ logΘ = K

(
ũj
∂ logΘ

∂r̃j
− 2

nΘ

(
3

2Θ

)1/2

Pij
∂Vi

∂r̃j
− 2

nΘ

(
3

2Θ

)1/2
∂Qj

∂r̃j

)
− εΓ̃ , (15)

where

Γ̃ ≡ 1

12

∫
dũ1dũ2ũ

3
12f̃(ũ1)f̃(ũ2). (16)

Next we expand Φ in both small parameters, ε and K: Φ = ΦK + Φε + ΦKK +
ΦKε + . . . where here, and in the rest of the paper, subscripts indicate the order
of the corresponding terms in the small parameters, e.g. ΦK = O(K). It is per-
haps worthwhile mentioning that the O(Kεn), for all n > 0, corrections to the
single-particle distribution function are named the Navier–Stokes or Chapman–
Enskog order whereas the O(K2εn) corrections are Burnett terms. In parallel to
the expansion of Φ in the small parameters, the operation of D̃ on any func-
tion of the field variables, ψ, can be formally expanded as the following sum:
D̃ψ = D̃Kψ + D̃εψ + D̃KKψ + D̃Kεψ + D̃εεψ + . . ., where e.g. D̃Kεψ is the O(Kε)
term in the expansion of D̃ψ in powers of K and ε. Since this expansion is
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well defined we shall refer to the symbols D̃K , D̃ε etc. as operators in their own
right.

3.1. Solution at O(K)

Upon substituting e = 1 (or ε = 0) in the right-hand side of (12) and retaining only
O(K) terms, one obtains

L̃(ΦK) = D̃K log n+ 2

(
3

2Θ

)1/2

ũiD̃KVi +
(
ũ2 − 3

2

)
D̃K logΘ (17)

where L̃ is the (standard) rescaled linearized Boltzmann operator (Kogan 1969;
Chapman & Cowling 1970; Harris 1971 and Cercignani 1975) for elastically colliding
particles, given by

L̃(Φ) ≡ 1

π5/2

∫
k̂·ũ12>0

dk̂dũ2(k̂ · ũ12)e
−ũ2

2 (Φ(ũ′1) + Φ(ũ′2)− Φ(ũ2)− Φ(ũ1)), (18)

The operation of D̃K on the hydrodynamic fields can be read from (13)–(15). One
obtains

D̃K log n = K

(
ũi
∂ log n

∂r̃i
−
(

3

2Θ

)1/2
∂Vi

∂r̃i

)
, (19)

D̃KVi = K

(
ũj
∂Vi

∂r̃j
− 1

2

(
2Θ

3

)1/2
∂ log n

∂r̃i
− 1

2

(
2Θ

3

)1/2
∂ logΘ

∂r̃i

)
, (20)

and

D̃K logΘ = K

(
ũj
∂ logΘ

∂r̃j
− 2

3

(
3

2Θ

)1/2
∂Vj

∂r̃j

)
. (21)

In deriving (20) and (21) we have employed the fact that Pij = 1
3
nΘδij to zeroth order

in K and ε, and the heat flux, Qi, is O(K) to lowest order in K (hence its spatial
derivatives are of higher order in K). Substitution of (19)–(21) in (17) results in

L̃(ΦK) = 2Kũiũj

(
3

2Θ

)1/2
∂Vi

∂r̃j
+K

(
ũ2 − 5

2

)
ũi
∂ logΘ

∂r̃i
, (22)

where the overline denotes a symmetrized traceless tensor, i.e. Aij ≡ 1
2
(Aij + Aji) −

1
3
Akkδij . Notice that (22) is identical to that obtained in the classical Chapman–Enskog

expansion (of elastic systems) to first order in spatial gradients.
The isotropy of the operator L̃ (Chapman & Cowling 1971 and Cercignani 1975)

implies that the solution of (22) is of the form

ΦK(ũ) = 2KΦ̂v(ũ)ũiũj

(
3

2Θ

)1/2
∂Vi

∂r̃j
+KΦ̂c(ũ)

(
ũ2 − 5

2

)
ũi
∂ logΘ

∂r̃i
, (23)

where Φ̂v(ũ) and Φ̂c(ũ) are functions of the (rescaled) speed ũ. It is common (Ko-
gan 1969; Chapman & Cowling 1970; Harris 1971 and Cercignani 1975) to ex-
pand these functions in (truncated) series of Sonine polynomials. Here we prefer
to expand them in sets of functions which obey the symmetry and asymptotic
properties of Φ̂v and Φ̂c respectively (see Appendix A for details†) as we have

† Appendix A is available on request from the authors or the JFM Editorial Office.
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ũ2 − 5

2

)
e−ũ
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as a function of ũ (cf. (23)).

done in the two-dimensional case (Sela et al. 1996). It turns out that the func-
tions Φ̂v(ũ) and Φ̂c(ũ) are formally even in ũ and they are both proportional
to 1/ũ at large values of ũ (a property that cannot be obeyed by a Sonine

polynomial series). The functions Φ̂v and Φ̂c, multiplied by e−ũ
2

and e−ũ
2

(ũ2 − 5
2
)

respectively (for the sake of convenience), are depicted in figures 1 and 2, respec-
tively.

Since the local equilibrium distribution function, f0, is defined in such a way
that the hydrodynamic fields are given by its appropriate moments, the contribution
of the correction Φ to these moments should vanish, i.e. Φ should be orthogonal
with respect to the weight function, f0, to the invariants of the (linearized) Boltzmann
operator (the eigenfunctions which correspond to zero eigenvalues): 1, ũ and ũ2,
whose respective averages are the density, the velocity and the temperature field.
This orthogonality property should hold to all orders in perturbation theory (Kogan
1969; Chapman & Cowling 1970; Harris 1971 and Cercignani 1975); it is also the
reason the (generalized) Chapman–Enskog expansion can be systematically carried
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out to all orders (cf. Appendix B) and it is repeatedly used below. Since the solution
of equations of the type of (22) is determined up to the addition of an arbitrary
combination of 1, ũ and ũ2, it is the above orthogonality property that determines
the required coefficients of these invariants. The orthogonality of the function ΦK
to ũ leads to the condition (on the basis of (23)):

∫ ∞
0

dũũ4e−ũ
2

Φ̂c(ũ)(ũ
2 − 5/2) = 0.

The other orthogonality conditions are identically satisfied by the right-hand side of
(23). The determination of Φ̂v does not require the application of the orthogonality
conditions.

The contribution of ΦK to the stress tensor reads

PK
ij =

∫
duuiujf0(ũ)ΦK = KnMv

16

15π1/2

(
2Θ

3

)1/2
∂Vi

∂r̃j
, (24)

where Mv is given by Mv =
∫ ∞

0
dxx6Φ̂v(x)e−x

2 ≈ −1.3224 (the integration employs

the numerically determined function Φ̂v , see Appendix A). Notice that in (24) some
variables are dimensionless and some are not; the integration is performed after ũ is
expressed in terms of u. A similar remark holds for all calculations below. Hence, one
obtains

PK
ij = −2µ̃0n`Θ

1/2 ∂Vi

∂rj
, (25)

where µ̃0 ≈ 0.3249. The subscript 0 denotes the fact that this coefficient is correct to
zeroth order in ε. Similarly, the contribution of ΦK to the heat flux is

QKi =
1

2

∫
duu2uif0(ũ)ΦK = KnMc

2

3π1/2

(
2Θ

3

)3/2
∂ logΘ

∂r̃i
, (26)

where: Mc =
∫ ∞

0
dxx6

(
x2 − 5

2

)
Φ̂c(x)e−x

2 ≈ −2.003. One thus obtains

QKi = −κ̃0n`Θ
1/2 ∂Θ

∂ri
, (27)

where κ̃0 ≈ 0.4101. These calculated values of the transport coefficients are in very
close agreement with those calculated before for hard (smooth, elastic) spheres (Kogan
1969; Chapman & Cowling 1970; Harris 1971 and Cercignani 1975). Since, following
(9), the energy sink term, Γ , has a prefactor ε ≡ 1 − e2, the function ΦK should
contribute a term which is O(Kε) to it. This term, denoted below by ΓKε, can be
computed by exploiting the invariance of the double integral in (9) to the exchange
u1 ↔ u2:

ΓKε =
επd2

4n

∫
du1du2u

3
12f0(ũ1)f0(ũ2)ΦK(u1). (28)

Notice that if one considers first the integration over u2 then clearly
∫

du2u
3
12f0(ũ2)

is an isotropic function of u1, i.e. one which depends on the speed ũ1 alone. The
integrand in (28) is therefore a product of ΦK(u1) and an isotropic function. Thus,
the form of ΦK , cf. (23), implies, by symmetry considerations and the orthogonality
conditions (which it must satisfy), that the integral in (28) vanishes, hence, ΓKε = 0.

3.2. Solution at O(ε)

In this subsection the Boltzmann equation is solved to first order in ε. The equation
determining Φε is obtained from (12) by expanding B̃(f̃, f̃, e) to first order in ε and
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retaining terms of O(ε). One obtains

L̃(Φε) = D̃ε log n + 2

(
3

2Θ

)1/2

ũiD̃εVi +
(
ũ2 − 3

2

)
D̃ε logΘ

− ε

π5/2

∫
k̂·ũ12>0

dk̂dũ2(k̂ · ũ12)
(

1− 1
2
(k̂ · ũ12)

2
)

e−ũ
2
2 . (29)

The integral on the right-hand side of (29) is obtained from the expansion of
B̃(f̃, f̃, e) to first order in ε, in (12), by utilizing the relation ũ

′2
1 + ũ

′2
2 = ũ2

1 + ũ2
2 +

1
2
ε(k̂ · ũ12)

2 + O(ε2) in the exponent. Clearly (cf. (13)–(15)), D̃ε log n = D̃εVi = 0 and:

D̃ε logΘ = −εΓ̃ 0, where Γ̃ 0 is the zeroth-order term in the expansion of Γ̃ (obtained
by substituting f̃0 for f̃ in (16)); its value is: Γ̃ 0 = 2

3
(2/π)1/2. Consequently, to O(ε):

Γε = (ε/`)(16/27π)1/2Θ3/2. Carrying out the integral on the right-hand side of (29)
the equation for Φε assumes the form

L̃(Φε) = −ε
[(

2

π

)1/2 (
2
3
ũ2 − 1

)
+

3− 2ũ2

8π1/2
e−ũ

2

+
(5 + 4ũ2 − 4ũ4)erf(ũ)

16ũ

]
. (30)

The right-hand side of (30) is orthogonal to the invariants 1, ũ and ũ2, as one can
easily verify by direct integration. Hence (30) is soluble. Appendix B presents a general
proof that all equations that need to be solved in the framework of the perturbation
theory employed in this article are soluble.

The isotropy of L̃ implies that the solution of (30) assumes the form Φε(ũ) = εΦ̂e(ũ)
where Φ̂e is a function of the speed ũ. This isotropic correction has been missed in
previous studies. In Appendix A it is shown that Φ̂e(ũ) is formally even with respect
to ũ and that it is asymptotically (for ũ � 1) proportional to ũ2 log ũ. An expansion
of Φ̂e in a set of functions obeying these symmetry and asymptotic properties is used
in order to obtain a numerical solution of (30); to this (inhomogeneous) solution one
must add a combination of the invariants to render it orthogonal to the invariants
(cf. Appendix A). The function Φ̂e(ũ) (multiplied by e−ũ

2

) is depicted in figure 3. It
is straightforward to deduce from the isotropy of Φε and its orthogonality to the
invariants that it does not contribute to the stress tensor nor to the heat flux. It only
contributes a second order, in ε, term to Γ :

Γεε =
ε2πd2

4n

∫
du1du2u

3
12f0(ũ1)f0(ũ2)Φ̂e(ũ1). (31)

The integrations over û1 and û2 in (31) are straightforward. The remaining double
integral over u1 and u2 can be evaluated by numerical means. The result is: Γεε ≈
−0.0352ε2nd2Θ3/2. Another contribution to Γ stems from products of ΦK and Φε
arising from the product of the expansions of the f factors in (9). It can be established
by symmetry arguments, similar to those used to show that ΦK does not contribute
to Γ , that these products yield vanishing contributions to Γ (since Φε is isotropic).

3.3. Solution at O(Kε)

In this section the Boltzmann equation is solved at O(Kε). The correction to f̃
corresponding to this order, ΦKε, contributes terms which are first order in the spatial
derivatives of the hydrodynamic fields (i.e. it belongs to the Navier–Stokes order),
with coefficients that are proportional to ε. In order to calculate the contribution of
ΦKε to the transport coefficients one does not have to evaluate it. Following Chapman
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Figure 3. Plot of Φ̂e(ũ) e−ũ
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as a function of ũ (cf. (30) and the text following it).

& Cowling (1970), the contribution of ΦKε to the heat flux reads

QKεi =
1

2

∫
duu2uif0ΦKε =

n

2

(
2Θ

3

)3/2 ∫
dũ
(
ũ2 − 5

2

)
ũif̃0ΦKε. (32)

The second equality in (32) results from the orthogonality of ΦKε to ũi:
∫

dũũif̃0ΦKε =

0. Now, using the equality L̃[Φ̂c(ũ)(ũ
2− 5

2
)ũi] = (ũ2− 5

2
)ũi (cf. (22), (23)), and exploiting

the fact that L̃ is self-adjoint, with f0 serving as the weight function, one obtains
that the correction to the heat flux due to ΦKε is

QKεi =
n

2π3/2

(
2Θ

3

)3/2 ∫
dũΦ̂c(ũ)

(
ũ2 − 5

2

)
ũie
−ũ2L̃(ΦKε). (33)

A detailed calculation of the integral in (33) is presented in Appendix C. The result is

QKεi = −εκ̃1n`Θ
1/2 ∂Θ

∂ri
− ετ̃1`Θ

3/2 ∂n

∂ri
, (34)

where κ̃1 ≈ 0.1072 and τ̃1 ≈ 0.2110.
Similarly, the contribution of ΦKε to the stress tensor is

PKε
ij =

∫
duuiujf0ΦKε =

2nΘ

3

∫
dũũiũjf0ΦKε. (35)

The second equality results from the orthogonality of ΦKε to ũ2:
∫

dũũ2f̃0ΦKε = 0.

Next, using the relation L̃[Φ̂v(ũ)ũiũj] = ũiũj , and exploiting the fact that L̃ is
self-adjoint, the correction to the stress tensor due to ΦKε is

PKε
ij =

2nΘ

3π3/2

∫
dũΦ̂v(ũ)ũiũje

−ũ2L̃(ΦKε). (36)

A detailed calculation of the above integral is presented in Appendix C. The result is

PKε
ij = −2εµ̃1n`Θ

1/2 ∂Vi

∂rj
, (37)

where µ̃1 ≈ 0.0576. The tensorial structure of ΦKε is similar to that of ΦK hence
its orthogonality properties imply that its contribution to Γ vanishes by symmetry
considerations.
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3.4. Contributions of other second-order terms

In order to complete the derivation of the constitutive relations to second order in
the small parameters, ε and K , one has to consider ΦKK and Φεε. The term Φεε is of
second order in ε and of zeroth order in the spatial gradients. Clearly, Φεε(ũ) is an
O(ε2) isotropic function of the speed, ũ. Hence, the isotropy and the orthogonality
conditions, which it must satisfy, imply that it does not contribute to the stress-tensor
nor to the heat flux (for the same reasons that Φε(ũ) does not contribute to them).
Moreover, its contribution to Γ is O(ε3) and it is therefore not considered here. The
term ΦKK is merely the perturbative contribution to f which is second order in the
spatial derivatives (and zeroth order in ε). The contributions of ΦKK to the dissipative
fluxes, i.e. the stress tensor and the heat-flux vector, are the well-known (e.g. Kogan
1969) Burnett terms for elastic hard spheres.

In the inelastic case the Burnett term ΦKK and the product of Navier–Stokes
terms ΦK (which result from the product of expansions of f in (9)) contribute to Γ
terms which are O(εK2). These are formally of higher than second order in the small
parameters but they are still Burnett terms (i.e. second order in the spatial derivatives).
They contribute Burnett terms to the equation of motion of the energy field; moreover,
this contribution is precisely of second order in the spatial derivatives since, unlike
the dissipative fluxes whose gradients (or divergence) appear in the equations of
motion, Γ appears as itself in the appropriate (energy) equation. The magnitude of
this (Burnett) contribution to Γ is similar to that of the O(εK) corrections to the
leading Navier–Stokes terms to the equations of motion through the stress tensor and
the heat-flux vector (second-order spatial derivatives and first order in ε). For these
reasons we include the second order, in K , contributions to Γ in the the constitutive
relations. Following a rescaling of (9), ΓKKε assumes the form

ΓKKε =
ε

8π3`

(
2Θ

3

)3/2

(2I1 + I2), (38)

where

I1 ≡
∫

dũ1dũ2ũ
3
12e
−(ũ2

1
+ũ2

2
)ΦKK(ũ1), (39)

and

I2 ≡
∫

dũ1dũ2ũ
3
12e
−(ũ2

1
+ũ2

2
)ΦK(ũ1)ΦK(ũ2). (40)

The factor 2 in (38) follows from the symmetry of the part of the integrand which
includes ΦKK(ũ1) or ΦKK(ũ2), to the interchange of ũ1 and ũ2. The integral I1 can be
written as follows:

I1 =

∫
dũ1χ(ũ1)ΦKK(ũ1)e

−ũ2
1 , (41)

where

χ(ũ1) =

∫
dũ2u

3
12e
−ũ2

2 = π

((
ũ2

1 + 5
2

)
e−ũ

2
1 +

π1/2(3 + 12ũ2
1 + 4ũ4

1)

4ũ1

erf(ũ1)

)
. (42)

The function χ, given in (42), is not orthogonal to 1 and ũ2
1. One may take advantage

of the orthogonality of ΦKK to the summational invariants of L̃ to replace χ in (41)
by χ ≡ χ− (4π/

√
2)(1 + 2ũ2

1). The latter function is orthogonal to all the summational

invariants. Then, define η as the unique solution of the equation L̃(η) = χ, which is
orthogonal to 1 and ũ2. The function η(ũ) is symmetric in ũ and it has been evaluated
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as a function of ũ.

in a similar way as Φ̂e (cf. Appendix A). The function η(ũ)e−ũ
2

is depicted in figure 4.
Next, exploiting the fact that L̃ is self-adjoint, I1 can be represented as

I1 =

∫
dũ1η(ũ1)e

−ũ2
1L̃(ΦKK). (43)

The calculation of I1 and I2 is straightforward but tedious. It is therefore relegated
to Appendix E†. The resulting O(εK2) correction to Γ reads

ΓKKε = ρ̃1ε`Θ
1/2 ∂Vi

∂rj

∂Vi

∂rj
+ ρ̃2

ε`

Θ1/2

∂Θ

∂ri

∂Θ

∂ri
+ ρ̃3

ε`

nΘ1/2

∂(nΘ)

∂ri

∂Θ

∂ri
+ ρ̃4ε`Θ

1/2 ∂
2Θ

∂ri∂ri
,

(44)

where ρ̃1 ≈ 0.1338, ρ̃2 ≈ 0.2444, ρ̃3 ≈ −0.0834 and ρ̃4 ≈ 0.0692.

3.5. Constitutive relations and normal stress difference

In summary, to second order in K , and linear order in ε, the heat flux assumes the
form

Qi = − κ̃n`Θ1/2 ∂Θ

∂ri
− λ̃`Θ3/2 ∂n

∂ri

+ θ̃1n`
2 ∂Vj

∂rj

∂Θ

∂ri
+ θ̃2n`

2

(
2

3

∂

∂xi

(
Θ
∂Vj

∂rj

)
+ 2

∂Vj

∂ri

∂Θ

∂rj

)
+ θ̃3`

2 ∂Vj

∂ri

∂(nΘ)

∂rj
+ θ̃4n`

2Θ
∂2Vj

∂ri∂rj
+ θ̃5n`

2 ∂Vj

∂ri

∂Θ

∂rj
, (45)

where κ̃ ≈ 0.4101 + 0.1072ε + O(ε2), λ̃ ≈ 0.2110ε + O(ε2) and the values of the
θ̃i are (Kogan 1969 and Chapman & Cowling 1970): θ̃1 ≈ 1.2291, θ̃2 ≈ −0.6146,
θ̃3 ≈ −0.3262, θ̃4 ≈ 0.2552, θ̃5 ≈ 2.6555. Notice that the heat flux includes a term
which is proportional to the density gradient. This term, which is mentioned in
the introduction, is also proportional to ε and it does not exist in the standard
Navier–Stokes theory; it is a consequence of inelasticity.

† Appendix E is available on request from the authors or the JFM Editorial Office.
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The stress tensor, to second order in K and linear order in ε, reads

Pij = 1
3
nΘδij − 2µ̃n`Θ1/2 ∂Vi

∂rj

+ω̃1n`
2 ∂Vk

∂rk

∂Vi

∂rj
− ω̃2n`

2

(
1

3

∂

∂ri

(
1

n

∂(nΘ)

∂rj

)
+
∂Vi

∂rk

∂Vk

∂rj
+ 2

∂Vi

∂rk

∂Vk

∂rj

)

+ω̃3n`
2 ∂

2Θ

∂ri∂rj
+ ω̃4

`2

Θ

∂(nΘ)

∂ri

∂Θ

∂rj
+ ω̃5

n`2

Θ

∂Θ

∂ri

∂Θ

∂rj
+ ω̃6n`

2 ∂Vi

∂rk

∂Vk

∂rj
, (46)

where µ̃ ≈ 0.3249 + 0.0576ε + O(ε2) and the values of the ω̃i are (Kogan 1969 and
Chapman & Cowling 1970): ω̃1 ≈ 1.2845, ω̃2 ≈ 0.6422, ω̃3 ≈ 0.2552, ω̃4 ≈ 0.0719,
ω̃5 ≈ 0.0231, ω̃6 ≈ 2.3510.

The inelastic dissipation term, Γ , to second order in K and up to second order in
ε, reads

Γ =
δ̃

`
Θ

3
2 +ρ̃1ε`Θ

1/2 ∂Vi

∂rj

∂Vi

∂rj
+ρ̃2

ε`

Θ1/2

∂Θ

∂ri

∂Θ

∂ri
+ρ̃3

ε`

nΘ1/2

∂(nΘ)

∂ri

∂Θ

∂ri
+ρ̃4ε`Θ

1/2 ∂
2Θ

∂ri∂ri
,

(47)

where δ̃ ≈ (16/27π)ε − 0.0112ε2, ρ̃1 ≈ 0.1338, ρ̃2 ≈ 0.2444, ρ̃3 ≈ −0.0834 and
ρ̃4 ≈ 0.0692. We reiterate that Γ is proportional to (1/`) (which follows from (9)
after non-dimensionalizing the integrand). Hence, to leading order in K and ε (i.e. K0

and ε1) its dependence on ` is given by (1/`). The next non-vanishing contribution
to Γ is of second order in the Knudsen number and it is proportional to `. This
property, which is specific to inelastic systems, indicates that (unlike in elastic systems)
one cannot deduce the Knudsen order of a term in the hydrodynamic equations by
counting the power of ` in its prefactor; instead one must consider the appropriate
order in the expansion of f or count spatial derivatives as explained below. As
mentioned above, the time derivatives of the mass, momentum and energy density
fields are respectively divergences of corresponding fluxes, except the latter field whose
equation of motion includes the term Γ which is not a divergence of a flux. As a
result, a term in the equations of motion which contains n spatial derivatives is of
O(Kn−1) unless this term belongs to Γ , in which case it is O(Kn) (the order in ε
notwithstanding).

The anisotropy of the stress tensor, i.e. the normal stress difference, is a Burnett effect
(as in the case of a two-dimensional shear flow). This fact is observed upon substituting
a simple-shear flow field V = γyx̂, in (46). The resulting diagonal components of the
stress tensor are: Pxx = 1

3
nΘ+ 1

12
(ω̃6 + 4ω̃2)n`

2γ2, Pyy = 1
3
nΘ+ 1

12
(ω̃6−8ω̃2)n`

2γ2 and

Pzz = 1
3
nΘ + 1

6
(ω̃6 − 2ω̃2)n`

2γ2.

The normal stress difference (normalized by the pressure P ≡ 1
3
nΘ), under steady-

state conditions, is obtained by using the above components of the stress tensor
together with the requirement that the heating and cooling rates are equal (this is
read from (8)):

Pxx − Pyy
P

=
6ω̃2δ̃

4µ̃− ρ̃1ε
, (48)

where the numerical constants on the right-hand side are given in the above. The
normal stress differences (as obtained from (48)) for values of e = 0.8 and e = 0.6
are ≈ 0.45 and ≈ 0.88 respectively. These values compare very well with numerical
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(Molecular Dynamics) results (Walton & Braun 1986) ≈ 0.42 and ≈ 0.86 respectively
(for a volume fraction ν = 0.025). Our predictions are still slightly higher than those
measured by Walton & Braun since the Boltzmann theory is valid in the limit ν → 0
while their calculations are performed at finite (even if small) values of the number
density (or volume fraction), and the normal stress difference decreases as the number
density increases (cf. Walton & Braun 1986). As a matter of fact, one may consider
the normal stress differences as a measurable manifestation of the Burnett terms in
sheared granular flows (Goldhirsch & Sela 1996). Clearly, our results also imply that
the matrix of correlations of the velocity fluctuations is non-diagonal and that its
diagonal entries are different from each other. The inverse of this matrix is often
referred to as the ‘anisotropic temperature’; this anisotropy is clearly a result of our
theory, the normal stress difference being responsible for the ‘diagonal anisotropy’, to
use a similar terminology.

Possible physical setups in which this effect can be measured are Couette and
Taylor–Couette systems as well as vibrated granular systems which are fluidized near
the base surface of the container. It is possible that it can also be observed in the
fluidized phase near the floor of a chute but this may be too hard a measurement to
perform.

3.6. Comparison to previous theories

There are two major methods by which hydrodynamic equations for granular fluids
have been derived on the basis of the Boltzmann equation. In one of them (Lun et al.
1984; Jenkins & Richman 1988; Boyle & Massoudi 1990; Lun 1991 and Goldshtein
& Shapiro 1995) the single particle distribution function is conjectured to have the
form of a perturbed local Maxwellian, where the perturbations are the gradients
of the field variables multiplied by numerical coefficients (that are determined by
requiring consistency with the Enskog equations or Maxwell’s conservation integrals).
The second method is based on the Grad expansion (Jenkins & Richman 1985a,b).
Both methods yield similar constitutive relations. The above-mentioned (as well as
other) studies did not consider Burnett terms but they included Enskog corrections
in their calculations in order to render the theory valid at moderately high densities.
Hence, a comparison of our results for the constitutive relations to those of previous
studies is possible only at the Navier–Stokes level (i.e. to first order in the gradients
of the hydrodynamic fields) and to lowest (zeroth) order in the volume fraction, ν. We
shall also restrict the comparison to the linear order in the degree of inelasticity, ε.
To the above orders in ε, K and ν, the result obtained before for the pressure tensor
is (after translating the granular temperature T used by Lun et al. (1984) and Jenkins
& Richman (1985a) to our notation Θ = 3T ):

P ∗ij = 1
3
nΘδij − 2µ̃∗n`Θ1/2 ∂Vi

∂rj
, (49)

where, µ̃∗ = 5
16

(π/3)1/2(1− 1
2
ε2). To zeroth order, in ε, this formula for µ̃∗, agrees with

our result. The next non-vanishing order, in ε, in the above expression for the viscosity,
is O(ε2) in contrast with our finding that it is O(ε). In the same approximation the
heat-flux vector, following Lun et al. (1984) and Jenkins & Richman (1985a) reads
(e.g. (4.19) in Lun et al. 1984)

Q∗i = −κ̃∗n`Θ1/2 ∂Θ

∂ri
− λ̃∗`Θ3/2 ∂n

∂ri
, (50)
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where, κ̃∗ = 25
64

(π/3)1/2(1− 25
32
ε) and λ̃∗ = − 15

32
(π/3)1/2νε. Although the above expression

for the heat flux contains a term which is proportional to the density gradient, this term
is O(n) and it stems from the Enskog correction to the Boltzmann equation; it vanishes
in the Boltzmann limit, in contrast with (45) above, in which a term proportional to
ε∇ log n exists. In addition, the sign of the O(ε), term in the expression for κ̃∗ obtained
by Lun et al. (1984) and Jenkins & Richman (1985a) is opposite to the sign obtained
in the present paper. Another difference exists in the form of the energy sink term.
The result obtained by them (e.g. (4.23) in Lun et al. 1984) is

Γ ∗ =
δ̃∗

`
Θ3/2, (51)

where δ̃∗ = (16/27π)1/2ε + O (ε3), whereas the theory developed here results in an
O(ε2) correction to the leading term (the latter is O(ε) in both theories) and terms of
O(εK2) which contribute dissipation terms of the same magnitude (and order) as the
O(ε) corrections to the stress and heat flux.

The qualitative differences between the theories developed by Lun et al. (1984)
and Jenkins & Richman (1985a) and our theory are not due to the differences in
the respective approaches since both methods allow for general ε dependence and
corrections to the Maxwellian distribution function. A careful examination of the
analyses performed by Lun et al. (1984) and Jenkins & Richman (1985a), which
are practically equivalent to each other, reveals the reason for the discrepancies,
described in the above: these theories do not take into account the quasi-microscopic
time scale for the decay of the granular temperature, τ/ε, where τ is the mean free
time. Since the transport coefficients attain their respective asymptotic values on a
time scale of order τ (e.g. (52),(53) in Jenkins & Richman 1985a), neglect of the
above time scale for the temperature gives rise to differences at O(ε) between our
results and previous ones. This should not be taken as criticism of the pioneering
works cited above since they did not claim correctness beyond the leading order
in ε. In the next section we perform an analysis which is similar to that presented
in Jenkins & Richman (1985a) while taking into account the fast time dependence of
the granular temperature. The result is transport coefficients which are in agreement
with those derived by the present (generalized) Chapman–Enskog expansion. Some
minor (quantitative) differences between the results obtained here for the transport
coefficients and those obtained by employing Grad’s method are due to the fact that
the standard application of the latter method does not include the isotropic correction
Φε and the functions Φ̂ (of the speed) are represented by effective constants (since
Grad’s method is basically a fit to f).

4. Application of Grad’s method to granular fluids
In this section it is demonstrated that Grad’s method of moments (Grad 1949) is

applicable to the description of granular fluids provided one takes into account the
fact that there is a microscopic time scale characterizing the dynamics of the granular
temperature. This time scale becomes macroscopic in the elastic limit (see below).

Grad’s method involves an expansion of the single-particle distribution func-
tion around a local Maxwellian distribution. The (multiplicative) correction to the
Maxwellian is usually assumed to be of the form of a series of (orthogonal) polyno-
mials in the fluctuating velocity (components), each of which has a time-dependent
prefactor (also known as a ‘moment’ for obvious reasons) which is calculated as part
of the Grad method. Let mβ (where β usually represents a tensorial index) denote a
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typical ‘moment’. This quantity can be shown to satisfy an equation of motion of the
form (Kogan 1969)

∂mβ

∂t
+

1

τ
mβ + Aβ = 0, (52)

where τ ∝ `/Θ1/2 is proportional to the (microscopic) mean free time between
collisions. The term Aβ represents ‘slow’ variables (which are assumed to vary on
hydrodynamic time scales). Upon formally solving (52) and noting that τ is by itself
a time-dependent entity (e.g. through its dependence on Θ) one obtains the following
(asymptotic) expansion for mβ:

mβ(t) =

[
mβ + τAβ − τ

∂

∂t
(τAβ) + ...

]
t=0

exp

(
−
∫ t

0

dt′

τ(t′)

)
−
(
τAβ − τ

∂

∂t
(τAβ) + ...

)
.

(53)

For ‘asymptotically’ long times (t� τ) one obtains from (53)

mβ = −τAβ + τ
∂

∂t
(τAβ) + . . . , (54)

i.e. the value of mβ(t) depends on the value of Aβ(t) and its time derivatives (at time
t). In the case of fluids whose constituents collide elastically, the first term on the
right-hand side of (54) yields the Navier–Stokes constitutive relations and the second
term begets the Burnett correction (the reason is that the action of a time derivative
on a hydrodynamic field equals the divergence of an expression, thereby producing a
term which is one order higher in the gradients). This is not the case for granular fluids
since the time derivative of the temperature field, Θ, includes a (dissipation) term
which, to leading order in K , contains no spatial derivatives. More precisely, since
τ ∝ `/Θ1/2 and ∂Θ/∂t ∝ −(ε/τ)Θ, it follows that ∂Θ/∂t ∝ −ε to leading order in the
Knudsen number. It follows that each of the higher orders in (54) contributes terms
which are O(K), i.e. of Navier–Stokes order, though of increasingly higher orders in
ε. In addition, if Aβ is chosen to be the temperature field, it contributes in a similar
manner to the Navier–Stokes order. The significance of the above observation can
perhaps be better appreciated by noting that τ/ε is the quasi-microscopic time scale
characterizing rate of decay of the temperature; this time scale must be taken into
account, as demonstrated below. To reiterate, the second term in the expansion on
the right-hand side of (54) contributes corrections to the Navier–Stokes constitutive
relations which are O(ε), and the next order terms (those which are not explicitly
presented in (54)) contribute further corrections to the Navier–Stokes order (i.e.
linear in the gradients) which are O(ε2) and higher. Therefore, unlike in the elastic
case, every term in the asymptotic series in (54) contributes to the Navier–Stokes
order.

Below we make use of the above observations in order to obtain constitutive
relations for granular flows by using Grad’s method of moments. To this end we use
the results obtained by Lun et al. (1984) and Jenkins & Richman (1985a). We only
consider a restricted version of their results since the present article is concerned with
near elastic collisions and the Boltzmann level of description of the dynamics: (i)
only the terms which are of zeroth order in the number density are considered; (ii)
the functions Θi(ψ) are neglected (cf. (23) in Jenkins & Richman 1985a); (iii) only
contributions up to first order in ε are taken into account; (iv) only the Navier–
Stokes level of description (i.e. terms which are first order in spatial gradients) is
considered.
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Following Jenkins & Richman (1985a), the stress tensor is determined by the
moments aij . Under the above-stated restrictions the equation satisfied by aij is

daij
dt

+
1

τ1

aij + 2TD̂ij = 0, (55)

where τ1 = 5/(16π1/2nd2T 1/2) is proportional to the mean free time (d is the diameter

of the spheres) and D̂ij is the symmetrized, traceless, strain-rate tensor. Notice that
the granular temperature denoted by T in Jenkins & Richman (1985a) is related to Θ
by Θ = 3T . It is standardly argued in applications of Grad’s method (cf. also Jenkins
& Richman 1985a) that it takes only few collisions per particle for aij to saturate to
the value (to first order in ε)

a∗ij = −2τ1TD̂ij = − 5
8
π1/2(1 + O(ε2))`T 1/2D̂ij . (56)

This approach is equivalent to truncating (54) at the first term. However, as we have
shown in the above, one has to take the second term into account as well in order
to obtain the Navier–Stokes constitutive relations, correct to first order in ε. One,
therefore, obtains

aij = −2τ1TD̂ij + τ1

∂

∂t
(2τ1TD̂ij). (57)

Using the definition of τ1 in the above and the O(ε) equation relation for the
decay rate of the granular temperature (cf. Jenkins & Richman 1985a): dT/dt =
−(4/3π1/2)(ε/`)T 3/2, one obtains, at the Navier–Stokes order

aij = − 5
8
π1/2

(
1 + 5

24
ε+ O(ε2)

)
`T 1/2D̂ij , (58)

which implies that the deviatoric stress tensor assumes the form Pij = −2µD̂ij , where
µ is the viscosity:

µ =
5π1/2

16

(
1 + 5

24
ε+ O(ε2)

)
n`T 1/2. (59)

The heat flux is determined by aijj (cf. Jenkins & Richman 1985a). Under the above
restrictions, the equation satisfied by aijj reads

daijj
dt

+
1

τ2

aijj + 5T
∂T

∂ri
= 0, (60)

where τ2 = 15/(32π1/2(1 + 25ε/32)nd2T 1/2). In Jenkins & Richman (1985a), similar
considerations to those leading to (56), have resulted in the following solution of (60):

a∗ijj = −5τ2T
∂T

∂ri
= −75π1/2

32

(
1− 25ε

32
+ O(ε2)

)
`T 1/2 ∂T

∂ri
. (61)

As shown above, the correct dependence on ε (to linear order in ε) can be obtained
by taking into account the first two terms in the expansion, (54):

aijj = −5τ2T
∂T

∂ri
+ τ2

∂

∂t

(
5τ2T

∂T

∂ri

)

= −75π1/2

32

[(
1 +

15

32
ε

)
`T 1/2 ∂T

∂ri
+

5

8
ε`
T 3/2

n

∂n

∂ri

]
. (62)



Rapid flows of smooth inelastic spheres 59

It follows that the heat-flux vector assumes the form

Qi = −κ∂T
∂ri
− λ ∂n

∂ri

where

κ =
75π1/2

64

(
1 +

15

32
ε+ O(ε2)

)
n`T 1/2 and λ =

375π1/2

256
(ε+ O(ε2)) `T 3/2.

The transport coefficients derived by using the generalized Chapman–Enskog expan-
sion read, following an appropriate translation of variables, as follows:

µCE ≈
√

3(0.3249 + 0.0576ε+ O(ε2)) n`T 1/2, (63)

κCE ≈ 3
√

3(0.4101 + 0.1072ε+ O(ε2)) n`T 1/2, (64)

λCE ≈ 3
√

3(0.2110ε+ O(ε2)) `T 3/2. (65)

It is easy to check that the latter transport coefficients are in good agreement with
those derived by using the ‘correct’ Grad method. The main quantitative difference
is due to the fact that the standard application of Grad’s method does not include
isotropic corrections to the Maxwellian distribution (which automatically arise in the
CE approach; these corrections can be included in the Grad expansion). In addition,
our calculations include accurate determinations of the corrections to the Maxwellian
distribution by (numerically) solving the appropriate integral equations (rather than
using effective constants).

5. Conclusion
We have developed a generalization of the Chapman–Enskog expansion for

analysing the Boltzmann equation pertaining to a monodisperse collection of smooth
spheres and we have carried out this expansion to Burnett order and derived constitu-
tive relations to this order. These relations are different from previously derived con-
stitutive relations and this difference has been explained. In principle, generalizations
of this work to include tangential restitution (in preparation) and polydispersivity
are algebraically tedious but they do not seem to require any novel ideas. The study
of non-spherical particles, which is of importance to practical applications, seems to
be possible as well, at least in the case of ellipsoidal particles. A generalization of
this work (which is formally limited to near-elastic collisions) to strongly inelastic
systems is of importance. Judging by the small prefactors of the higher-order terms
in the Chapman–Enskog perturbative series it seems that the expansion in powers
of ε is suitable for obtaining constitutive relations for strongly inelastic systems in
spite of the fact that the theory is formally limited to near-elastic systems. On the
other hand, the treating of high shear rates or high temperature gradients poses
a true challenge, as it does in the realm of elastic systems. One of the difficulties
encountered when attempting to tackle the latter problem stems from the fact that
the Burnett equations (though useful for steady states) are mathematically ill-posed
(Bobylev 1984, and references therein). While this problem is known to exist in the
realm of molecular gases it is only of importance there in extreme cases such as
those that occur in strong shocks (Fiscko & Chapman 1989). In contrast, in the
field of granular systems, the shear rates are, practically always, relatively ‘high’;
consider e.g. the steady-state temperature in a sheared granular system: T ∝ γ2`2/ε
(as mentioned above, this relation follows straightforwardly from the equations of
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motion). The ratio γ`/T 1/2 is practically always O(1) unless the system is nearly
elastic and thus the change of the macroscopic velocity over the scale of a mean
free path is of the order of the thermal speed. Thus, ‘far from elastic’ and ‘strongly
sheared’ are intimately related in granular flows. It is possible that some resummation
techniques (as proposed e.g. by Rosenau 1989), developed for molecular systems,
may be of use in obtaining well-posed equations of motion for granular systems,
which are not limited to the Navier–Stokes order. This, however, remains to be
seen.

One of us (I.G.) gratefully acknowledges partial support from the US-Israel Bina-
tional Science Foundation and the National Science Foundation.
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Appendix B. Proof of solubility

In this Appendix it is shown that the generalized Chapman–Enskog expansion,
developed in this work, results in soluble equations to all orders in the expansion. To
this end we consider (10). This equation can be written as

f̃0L̃(Φ) = D̃f̃ + f̃D̃
(
log n− 3

2
logΘ

)
− 1

2
f̃0Ω̃(Φ,Φ)− (B̃(f̃, f̃, e)− B̃el(f̃, f̃)), (B 1)

where Ω̃ is defined in (C 3) of Appendix C and B̃el(f̃, f̃) ≡ B̃(f̃, f̃, e = 1) is the
collision integral corresponding to elastic collisions. Equation (B 1) is soluble only if
its right-hand side is orthogonal to all the summational invariants of L̃: 1, ũ and
ũ2. The integral over u1 of the first term on the right-hand side of (B 1) times any of
the summational invariants can be carried out as follows. Consider the integration
involving the first summational invariant:∫

dũD̃f̃ = `

(
3

2Θ

)2 ∫
dv

(
∂

∂t
+ vi

∂

∂ri

)(
1

n

(
2Θ

3

)3/2

f

)
. (B 2)

Clearly, the partial derivatives with respect to t and ri can be placed in front of the
integral. Then, using the definition of the field variables given in (3)–(5) and (6)–(8),
one obtains ∫

dũD̃f̃ = −K 2

n

(
3

2Θ

)3/2(
P ′ij
∂Vi

∂r̃j
+
∂Qi

∂r̃i

)
− 3

2
εΓ̃ (B 3)

where P ′ij ≡ Pij − 1
3
nΘδij is the deviatoric stress tensor. In a similar way one obtains∫

dũũiD̃f̃ = K
3

2nΘ
Pij

∂

∂r̃j

(
3
2

logΘ − log n
)

(B 4)

and∫
dũũ2D̃f̃ = K

2

n

(
3

2Θ

)3/2(
Qi
∂ log n

∂r̃i
− 3

2
Qi
∂ logΘ

∂r̃i
+ 3

2
P ′ij
∂Vi

∂r̃j
+

3

2

∂Qi

∂r̃i

)
+ 9

4
εΓ̃ .

(B 5)

The integral of the second term on the right-hand side of (B 1) times any of the
summational invariants is performed by using the following relation which follows



Rapid flows of smooth inelastic spheres 61

directly from (13)–(15):

D̃
(
log n− 3

2
logΘ

)
= K

(
ũi
∂ log n

∂r̃i
− 3

2
ũi
∂ logΘ

∂r̃i
+

2

n

(
3

2Θ

)3/2

P ′ij
∂Vi

∂r̃j
+

2

n

(
3

2Θ

)3/2
∂Qi

∂r̃i
+ 3

2
εΓ̃

)
.

(B 6)

One obtains∫
dũf̃D̃

(
log n− 3

2
logΘ

)
= K

2

n

(
3

2Θ

)3/2(
P ′ij
∂Vi

∂r̃j
+
∂Qi

∂r̃i

)
+ 3

2
εΓ̃ , (B 7)

∫
dũũif̃D̃

(
log n− 3

2
logΘ

)
= −K 3

2nΘ
Pij

∂

∂r̃j

(
3
2

logΘ − log n
)
, (B 8)

and∫
dũũ2f̃D̃

(
log n− 3

2
logΘ

)
= K

2

n

(
3

2Θ

)3/2(
−Qi

∂ log n

∂r̃i
+

3

2
Qi
∂ logΘ

∂r̃i
− 3

2
P ′ij
∂Vi

∂r̃j
− 3

2

∂Qi

∂r̃i

)
− 15

4
εΓ̃ . (B 9)

The integral of the third term on the right-hand side of (B 1) times any of the
summational invariants vanishes due to the symmetry properties which follow from
the fact that the operator Ω̃ is defined with an elastic velocity transformation ((C 3)
in Appendix C). Finally consider the integral of the fourth term on the right-hand
side of (B 1) times the summational invariants. Clearly, the contribution of B̃el to any
of the integrals vanishes due to the conservation of mass, momentum and energy in
elastic collisions. Moreover, the contributions of B̃ to the integrals involving 1 and ũi
vanish. The integral involving ũ2 is∫

dũũ2(B̃(f̃, f̃, e)− B̃el(f̃, f̃)) = − 3
2
εΓ̃ . (B 10)

Combining all of the results it follows that the right-hand side of (B 1) is orthogonal
to all the summational invariants of L̃.

Appendix C. Constitutive relations at O(Kε)

In this Appendix, a detailed derivation of the constitutive relations at O(Kε) is
presented. At this order (12) reads

D̃Kε log n+ 2

(
3

2Θ

)1/2

ũiD̃KεVi +
(
ũ2 − 3

2

)
D̃Kε logΘ

+ ΦK

(
D̃ε log n+ 2

(
3

2Θ

)1/2

ũiD̃εVi +
(
ũ2 − 3

2

)
D̃ε logΘ

)

+ Φε

(
D̃K log n+ 2

(
3

2Θ

)1/2

ũiD̃KVi +
(
ũ2 − 3

2

)
D̃K logΘ

)
+ D̃KΦε + D̃εΦK

= L̃(ΦKε) + εΞ̃(ΦK) + εΛ̃(ΦK) + Ω̃(ΦK,Φε), (C 1)
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where the operators on the right-hand side of arise from the expansion of B̃(f̃, f̃, e)
at O(Kε). The operator L̃ is defined in (18) and

Ξ̃(ΦK) ≡ 1

π5/2

∫
k̂·u12>0

dũ2dk̂(k̂ · ũ12)
(

1− 1
2
(k̂ · ũ12)

2
)

e−ũ
2
2 (ΦK(ũ′1) + ΦK(ũ′2)), (C 2)

Ω̃(ΦK,Φε) ≡
1

π5/2

∫
k̂·u12>0

dũ2dk̂(k̂ · ũ12)e
−ũ2

2

(
ΦK(ũ′1)Φε(ũ

′
2) + ΦK(ũ′2)Φε(ũ

′
1)

− ΦK(ũ1)Φε(ũ2)− ΦK(ũ2)Φε(ũ1)) , (C 3)

and

Λ̃(ΦK) =
1

π5/2
lim
ε→0

∂

∂ε

∫
k̂·u12>0

dũ2dk̂(k̂ · ũ12)e
−ũ2

2 (ΦK(ũ′1) + ΦK(ũ′2)). (C 4)

Notice that in the definition of Ω̃ and Ξ̃ the transformation between the incoming and
outgoing velocities is given by the elastic relation. Consider now the operation of the
various orders of D̃ on the left-hand side of (C 1). Clearly, the right-hand side of (13),
(14) does not contain any term of order Kε. This implies that D̃Kε log n = D̃KεVi = 0.
Moreover, the fact that ΦK does not contribute to Γ or Γ̃ (see the text following
(28)) implies Γ̃ K = 0 (equivalent to ΓKε = 0), hence, also D̃Kε logΘ = 0. Next, since
the operation of D̃K and D̃ε on the hydrodynamic fields has been computed in the
above ((19)–(21) and §3.2) we need only to calculate D̃KΦε and D̃εΦK . First consider
D̃KΦε. Since Φε is a function of ũ alone, which is a function of V and Θ, one obtains
by using the chain rule that

D̃KΦε = εΦ̂′e(ũ)D̃K(ũ2) = εΦ̂′e(ũ)D̃K

(
3(v − V )2

2Θ

)

= −KεΦ̂′e(ũ)
(
−ũj

∂ log n

∂r̃j
+ 2ũiũj

(
3

2Θ

)1/2
∂Vi

∂r̃j
+ (ũ2 − 1)ũj

∂ logΘ

∂r̃j

)
, (C 5)

where the prime denotes differentiation with respect to ũ2. In deriving (C 5) we
have made use of (20), (21). It remains to evaluate D̃εΦK . Since, as noted above,
D̃ε log n = D̃εVi = 0, the operation of D̃ε on ΦK is non-vanishing because of the
dependence of the latter on Θ. Notice that Θ appears in ΦK both explicitly and in
ũ2 = 3u2/2Θ, hence by using the relation ∂ũ2/∂Θ = −ũ2/Θ it follows that

D̃εΦK =

(
−∂ΦK
∂ũ2

ũ2

Θ
+
∂ΦK

∂Θ

)
D̃εΘ +

∂ΦK

∂
(
∂ logΘ/∂ri

)D̃ε

(
∂ logΘ

∂ri

)
. (C 6)

The action of D̃ε on ∂ logΘ/∂ri can be obtained by using the relation

D̃ = `

(
3

2Θ

)1/2(
∂

∂t
+ vi

∂

∂ri

)
.

The calculation is facilitated by the fact that the operator in the brackets commutes
with ∂/∂ri, hence one may exchange the order of operations of these two operators.
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Next using the result D̃ε logΘ = −ε 2
3
(2/π)1/2 and ` = 1/(πnd2), it follows that

D̃ε

(
∂ logΘ

∂r̃i

)
= −ε2

3

(
2

π

)1/2
∂

∂r̃i

(
log n+ 1

2
logΘ

)
. (C 7)

The result, (C 7), can be used in (C 6), together with the explicit dimensional form of
ΦK , to yield

D̃εΦK = Kε
2

3

(
2

π

)1/2
[

2
(
Φ̂′v(ũ)ũ

2 + 3
2
Φ̂v(ũ)

)
ũiũj

(
3

2Θ

)1/2
∂Vi

∂r̃j

+
(
Φ̂′c(ũ)ũ

2
(
ũ2 − 5

2

)
+ Φ̂c(ũ)ũ

2
)
ũi
∂ logΘ

∂r̃i
− Φ̂c(ũ)

(
ũ2 − 5

2

)
ũi
∂ log n

∂r̃i

]
. (C 8)

All in all, (C 1) assumes the form

L̃(ΦKε) = Kε

{
4

3

((
2

π

)1/2

(Φ̂′v(ũ)ũ
2 − Φ̂v(ũ)(ũ2 − 3)) + 3

2
(Φ̂e(ũ)− Φ̂′e(ũ))

)

×ũiũj
(

3

2Θ

)1/2
∂Vi

∂r̃j
+

[
Φ̂e(ũ)

(
ũ2 − 5

2

)
− Φ̂′e(ũ)(ũ2 − 1) +

2

3

(
2

π

)1/2

×
(
Φ̂′c(ũ)ũ

2

(
ũ2 − 5

2

)
− Φ̂c(ũ)

(
ũ4 − 5ũ2 + 15

4

))]
ũi
∂ logΘ

∂r̃i

+

(
Φ̂′e(ũ)−

2

3

(
2

π

)1/2

Φ̂c(ũ)
(
ũ2 − 5

2

))
ũi
∂ log n

∂r̃i

}
− εΞ̃(ΦK)

−εΛ̃(ΦK)− Ω̃(ΦK,Φε)

≡ SKε − εΞ̃(ΦK)− εΛ̃(ΦK)− Ω̃(ΦK,Φε). (C 9)

Note that since the operators in (C 9) are isotropic and so is Φε, it follows that ΦKε
must be of the same tensorial structure as ΦK , i.e. it includes terms proportional to ũi
and ũiũj multiplied by isotropic functions of ũ. This structure of Φε combined with
the orthogonality conditions imply that this function is orthogonal to any isotropic
function. In particular, its contribution to Γ vanishes. The contribution of Φε to the
heat flux QKεi (see (33)) can be written as a sum of three terms, QKεi1 +QKεi2 +QKεi3 . The
first term is

QKεi1 =
n

2π3/2

(
2Θ

3

)3/2 ∫
dũΦ̂c(ũ)

(
ũ2 − 5

2

)
ũie
−ũ2

SKε. (C 10)

Considering the explicit form of SKε, given in (C 9), it follows by symmetry consid-
erations that its parts, which are proportional to the velocity gradients, vanish upon
integration (since the average of uiujuk vanishes). Hence, the only non-vanishing con-
tributions to QKεi1 stem from terms which are proportional to the temperature and

density gradients. Next, using the result
∫

d ˆ̃uũiũj = 4
3
πũ2δij , one obtains

QKεi1 = α1εn`Θ
1/2 ∂Θ

∂ri
+ β1ε`Θ

3/2 ∂n

∂ri
, (C 11)
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where,

α1 ≡
4

9

(
2

3π

)1/2 ∫ ∞
0

dũũ4Φ̂c(ũ)
(
ũ2 − 5

2

)
e−ũ

2

×
[
Φ̂e(ũ)

(
ũ2 − 5

2

)
− Φ̂′e(ũ)(ũ2 − 1) +

2

3

(
2

π

)1/2

×
(
Φ̂′c(ũ)ũ

2
(
ũ2 − 5

2

)
− Φ̂c(ũ)

(
ũ4 − 5ũ2 + 15

4

))]
, (C 12)

and,

β1 ≡
4

9

(
2

3π

)1/2 ∫ ∞
0

dũũ4Φ̂c(ũ)
(
ũ2 − 5

2

)
e−ũ

2

(
Φ̂′e(ũ)−

2

3

(
2

π

)1/2

Φ̂c(ũ)
(
ũ2 − 5

2

))
.

(C 13)

Both of the above integrals have been evaluated numerically. The result is α1 ≈
−0.3619 and β1 ≈ −0.2110. The second term contributing to QKεi is

QKεi2 = − εn

2π3/2

(
2Θ

3

)3/2 ∫
dũΦ̂c(ũ)

(
ũ2 − 5

2

)
ũie
−ũ2

(Ξ̃ + Λ̃). (C 14)

The reason that we consider Ξ̃ and Λ̃ together is that this way one obtains a
cancelation of terms. Substituting (C 2) and (C 4) in (C 14), one obtains

QKεi2 = − εn

2π4

(
2Θ

3

)3/2 ∫
k̂·u12>0

dũ1dũ2dk̂(k̂ · ũ12)
(

1− 1
2
(k̂ · ũ12)

2
)

e−(ũ2
1
+ũ2

2
)

× (ΦK(ũ′1) + ΦK(ũ′2))Φ̂c(ũ1)
(
ũ2

1 − 5
2

)
ũ1i

− εn

2π4

(
2Θ

3

)3/2

lim
ε→0

∂

∂ε

∫
k̂·u12>0

dũ1dũ2dk̂(k̂ · ũ12)e
−(ũ2

1
+ũ2

2
)

× (ΦK(ũ′1) + ΦK(ũ′2))Φ̂c(ũ1)
(
ũ2

1 − 5
2

)
ũ1i. (C 15)

Recall that in the first integral the elastic velocity transformation is employed while
in the second integral one has to consider the inelastic transformation to first order
in ε. Hence, in the first integral one can transform to primed integration variables

by using dũ1dũ2 = dũ′1dũ
′
2, k̂ · ũ12 = −k̂ · ũ′12 and ũ2

1 + ũ2
2 = ũ

′2
1 + ũ

′2
2 , and in the

second integral one must use dũ1dũ2 = (1− 1
2
ε)dũ′1dũ

′
2, k̂ · ũ12 = −(1− 1

2
ε)k̂ · ũ′12 and

ũ2
1 + ũ2

2 = ũ
′2
1 + ũ

′2
2 − 1

2
ε(k̂ · ũ′12)

2. Next, upon taking the derivative with respect to ε at
ε = 0 (Cf. (C 15)) one obtains

QKεi2 = − εn

2π4

(
2Θ

3

)3/2

lim
ε→0

∂

∂ε

∫
k̂·u12>0

dũ1dũ2dk̂(k̂ · ũ12)e
−(ũ2

1
+ũ2

2
)

× (ΦK(ũ1) + ΦK(ũ2))Φ̂c(ũ
′
1)
(
ũ
′2
1 − 5

2

)
ũ′1i. (C 16)

Considering the form of ΦK (cf. (23)), it follows by symmetry considerations that the
part of ΦK which is proportional to ũiũj does not contribute to the integral in (C 16).
The integral is further simplified by renaming ũ′1 as ũ, multiplying the integrand by
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δ(ũ− ũ1 + q(k̂ · ũ12)k̂) (where q ≡ 1
2
(1 + e)) and integrating over ũ. One obtains

QKεi2 = − εn

2π4

(
2Θ

3

)3/2

lim
ε→0

∂

∂ε

∫
dũ1dũ2due

−(ũ2
1
+ũ2

2
)

× (ΦK(ũ1) + ΦK(ũ2))Φ̂c(ũ)
(
ũ2 − 5

2

)
ũiIδ, (C 17)

where, Iδ ≡
∫
k̂·ũ12>0

dk̂(k̂ · ũ12)δ(ũ− ũ1 + q(k̂ · ũ12)k̂). The integral in (C 17) is then split
into two parts. The first part is (using (23) and defining s̃ ≡ ũ− ũ1)

(I) = − εnK

2π4

(
2Θ

3

)3/2
∂ logΘ

∂r̃j
lim
ε→0

∂

∂ε

∫
ds̃dũ2due

−(ũ−s̃)2−ũ2
2

× Φ̂c(|ũ− s̃|)Φ̂c(ũ)
(
(ũ− s̃)2 − 5

2

) (
ũ2 − 5

2

)
ũi(ũj − s̃j)Iδ. (C 18)

First, one performs an integration over ˆ̃u2 (i.e. the orientations of ũ2). To this end one
needs (D 13), which shows that for any smooth function, F , the following holds:∫ π

0

dθ′2 sin θ′2F(cos θ′2)Iδ =
1

q2su2

F

(
ŝ · u
u2

+
1− q
q

s

u2

)
H

(
u2 − |

1− q
q

s+ ŝ · u|
)
.

It follows that ∫
d ˆ̃u2Iδ =

2π

q2s̃ũ2

H

(
ũ2 − |

1− q
q

s̃+ ˆ̃s · ũ|
)
,

where H denotes the Heaviside function. Hence (C 18) assumes the form

(I) = − εnK

2π4

(
2Θ

3

)3/2
∂ logΘ

∂r̃j
lim
ε→0

∂

∂ε

2π

q2

∫
ds̃dũ

∫ ∞
| 1−q
q
s̃+ˆ̃s·ũ|

dũ2

ũ2

s̃
e−(ũ−s̃)2−ũ2

2

× Φ̂c(|ũ− s̃|)Φ̂c(ũ)
(
(ũ− s̃)2 − 5

2

) (
ũ2 − 5

2

)
ũi(ũj − s̃j), (C 19)

Clearly, the integral in (C 19) is proportional to the second-order isotropic tensor,
δij . One may, therefore, choose specific directions in the integral, e.g. i = j = 1,
and replace ∂ logΘ/∂r̃j by ∂ logΘ/∂r̃i. Next one performs an integration over the
orientations of s̃ and ũ keeping the angle between them, θ′, fixed. This integration
is performed by first transforming s̃ to spherical coordinates, choosing the z-axis to
coincide with ũ and integrating over the azimuthal angle of s̃ in the latter frame
of reference. An integration over all orientations of ũ is performed next. It follows
that:

∫
ũ·s̃=ũs̃ cos θ′

d ˆ̃u dˆ̃sũx(ũx − s̃x) = 8
3
π2ũ(ũ− s̃ cos θ′), where use has been made of the

transformations given in (A 3) and (A 4). Substituting this result in (C 19), performing
an obvious shift in the definition of ũ2 and substituting dy ≡ d(cos θ′), one obtains

(I) = − εnK

2π4

(
2Θ

3

)3/2
∂ logΘ

∂r̃i
lim
ε→0

∂

∂ε

16π3

3q2

∫ ∞
0

ds̃

∫ ∞
0

dũ

∫ ∞
0

dũ2

∫ 1

−1

dys̃ũ2ũ
3(ũ− s̃y)

× Φ̂c
(
(ũ2 − 2ũs̃y + s̃2)1/2

)
Φ̂c(ũ)

(
ũ2 − 2ũs̃y + s̃2 − 5

2

) (
ũ2 − 5

2

)
× e−(ũ2−2ũs̃y+s̃2)e−(ũ2

2
+( 1−q

q
s̃+ũy)2). (C 20)

Next, taking the derivative with respect to ε at ε = 0 and carrying out the integration
over ũ2, one obtains (I) = α2εn`Θ

1/2∂Θ/∂ri where

α2 = − 4
√

2

9
√

3π

∫ ∞
0

ds̃

∫ ∞
0

dũ

∫ 1

−1

dys̃ũ3(ũ− s̃y)(1− s̃ũy)

× Φ̂c
(
(ũ2 − 2ũs̃y + s̃2)1/2

)
Φ̂c(ũ)(ũ

2 − 2ũs̃y + s̃2 − 5
2
)
(
ũ2 − 5

2

)
× e−(ũ2−2ũs̃y+s̃2)e−ũ

2y2

. (C 21)



66 N. Sela and I. Goldhirsch

The triple integral in (C 21) has been evaluated numerically. The result is α2 ≈ −0.0282.
The second part of (C 17) reads

(II) = − εnK

2π4

(
2Θ

3

)3/2
∂ logΘ

∂r̃j
lim
ε→0

∂

∂ε

∫
ds̃dũ2due

−(ũ−s̃)2−ũ2
2

× Φ̂c(ũ2)Φ̂c(ũ)
(
ũ2

2 − 5
2

) (
ũ2 − 5

2

)
ũiũ2jIδ. (C 22)

Using similar consideration as in the previous case together with the result (D 13),
cited above,∫

d ˆ̃u2ũ2xIδ =
2πs̃x
q2s̃2ũ2

(
1− q
q

s̃+ ˆ̃s · ũ
)
H

(
ũ2 − |

1− q
q

s̃+ ˆ̃s · ũ|
)
,

one obtains

(II) = − εnK

2π4

(
2Θ

3

)3/2
∂ logΘ

∂r̃i
lim
ε→0

∂

∂ε

2π

q2

∫
ds̃dũ

∫ ∞
| 1−q
q
s̃+ˆ̃s·ũ|

dũ2

ũ2

s̃2

(
1− q
q

s̃+ ˆ̃s · ũ
)

× e−(ũ−s̃)2−ũ2
2Φ̂c(ũ2)Φ̂c(ũ)

(
ũ2

2 − 5
2

) (
ũ2 − 5

2

)
ũxs̃x. (C 23)

Next using the result: ∫
ũ·s̃=ũs̃ cos θ′

d ˆ̃udˆ̃sũxs̃x =
8π2

3
ũs̃ cos θ′,

followed by an appropriate shift in the integration variable ũ2 and the substitution
dy = d(cos θ′), one obtains

(II) = − εnK

2π4

(
2Θ

3

)3/2
∂ logΘ

∂r̃i
lim
ε→0

∂

∂ε

16π3

3q2

∫ ∞
0

ds̃

∫ ∞
0

dũ

∫ ∞
0

dũ2

∫ 1

−1

dys̃ũ2ũ
3y

×
(

1− q
q

s̃+ ũy

)
× Φ̂c

(ũ2
2 +

(
1− q
q

s̃+ ũy

)2
)1/2

 Φ̂c(ũ)

×
(
ũ2

2 +

(
1− q
q

s̃+ ũy

)2

− 5

2

)(
ũ2 − 5

2

)
× e−(ũ2−2ũs̃y+s̃2)e−(ũ2

2
+( 1−q

q
s̃+ũy)2). (C 24)

Taking the derivative with respect to ε at ε = 0 and carrying out the integration over
s̃ yields (II) = α3εn`Θ

1/2∂Θ/∂ri, where

α3 = − 4
√

2

9
√

3π

∫ ∞
0

dũ

∫ ∞
0

dũ2

∫ 1

−1

dyũ2ũ
3y

×
{[

ũy +

√
π

2
(1 + 2ũ2y2)eũ

2y2

(1 + erf(ũy))

]

×
[

1

2
− ũ2y2

(
1−

Φ̂′c
(
(ũ2

2 + ũ2y2)1/2
)

Φ̂c
(
(ũ2

2 + ũ2y2)1/2
) − 1

ũ2
2 + ũ2y2 − 5

2

)]

+ ũy + π1/2ũ2y2eũ
2y2

(1 + erf(ũy))

}(
ũ2

2 + ũ2y2 − 5
2

) (
ũ2 − 5

2

)
× Φ̂c

(
(ũ2

2 + ũ2y2)1/2
)
Φ̂c(ũ)e

−ũ2

e−(ũ2
2
+ũ2y2). (C 25)
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The above triple integral has been evaluated numerically. The result is α3 ≈ 0.2849.
The third contribution to QKεi is

QKεi3 = − εn

2π3/2

(
2Θ

3

)3/2 ∫
dũΦ̂c(ũ)

(
ũ2 − 5

2

)
ũie
−ũ2

Ω̃, (C 26)

where Ω̃ is given in (C 3). Substituting (C 3) in (C 26), one obtains

QKεi3 = − εn

2π4

(
2Θ

3

)3/2 ∫
k̂·u12>0

dũ1dũ2dk̂(k̂ · ũ12)e
−(ũ2

1
+ũ2

2
)Φ̂c(ũ1)

(
ũ2

1 − 5
2

)
ũ1i

× (ΦK(ũ′1)Φε(ũ
′
2) + ΦK(ũ′2)Φε(ũ

′
1)− ΦK(ũ1)Φε(ũ2)− ΦK(ũ2)Φε(ũ1)). (C 27)

Notice that in (C 27), the velocity transformation corresponds to the elastic limit. The
part of the integral involving (ΦK(ũ′1)Φε(ũ

′
2) +ΦK(ũ′2)Φε(ũ

′
1)) can be transformed to an

integration over the primed variables by using the elastic transformation, cf. the text
following (C 15), and an exchange of the primed and unprimed variables. This part
of the integral is further simplified by renaming ũ′1 as ũ, multiplying the integrand by

δ(ũ− ũ′1 + (k̂ · ũ12)k̂) and integrating over ũ. One obtains

QKεi3 = − εn

2π4

(
2Θ

3

)3/2 ∫
dũ1dũ2dũe

−(ũ2
1
+ũ2

2
)

× (ΦK(ũ1)Φε(ũ2) + ΦK(ũ2)Φε(ũ1))Φ̂c(ũ)
(
ũ2 − 5

2

)
ũiI

(0)
δ

+
εn

2π4

(
2Θ

3

)3/2 ∫
k̂·u12>0

dũ1dũ2dk̂(k̂ · ũ12)e
−(ũ2

1
+ũ2

2
)

× (ΦK(ũ1)Φε(ũ2) + ΦK(ũ2)Φε(ũ1))Φ̂c(ũ1)
(
ũ2

1 − 5
2

)
ũ1i, (C 28)

where I (0)
δ ≡ Iδ(q = 1). The term QKεi3 is split into four parts. The first equals (after

employing the explicit forms of ΦK and Φε, and using s̃ ≡ ũ− ũ1)

(I) = − εnK

2π4

(
2Θ

3

)3/2
logΘ

∂r̃j

∫
ds̃dũ2dũe

−(ũ−s̃)2−ũ2
2

× Φ̂c(|ũ− s̃|)Φ̂e(ũ2)Φ̂c(ũ)
(
(ũ− s̃)2 − 5

2

) (
ũ2 − 5

2

)
ũi(ũj − s̃j)I (0)

δ . (C 29)

Notice that except for the extra term Φ̂e(ũ2) and the above definition of I (0)
δ , the

integrand in (C 29) is similar to that in (C 18). Following a similar derivation as
performed following (C 18), one obtains (I) = α4εn`Θ

1/2∂Θ/∂ri where

α4 = − 16
√

2

9
√

3π

∫ ∞
0

ds̃

∫ ∞
0

dũ

∫ ∞
0

dũ2

∫ 1

−1

dys̃ũ2ũ
3(ũ− s̃y)Φ̂c(ũ)

× Φ̂c
(
(ũ2 − 2ũs̃y + s̃2)1/2

)
Φ̂e
(
(ũ2

2 + ũ2y2)1/2
) (
ũ2 − 2ũs̃y + s̃2 − 5

2

) (
ũ2 − 5

2

)
× e−(ũ2−2ũs̃y+s̃2)e−(ũ2

2
+ũ2y2). (C 30)

The integral in (C 30) has been evaluated numerically. The result is α4 ≈ −0.0016.
The second term reads

(II) = − εnK

2π4

(
2Θ

3

)3/2
∂ logΘ

∂r̃j

∫
ds̃dũ2dũe

−(ũ−s̃)2−ũ2
2

× Φ̂c(ũ2)Φ̂e(|ũ− s̃|)Φ̂c(ũ)
(
ũ2

2 − 5
2

) (
ũ2 − 5

2

)
ũiũ2jI

(0)
δ . (C 31)

Notice that except for the extra term Φ̂e(|ũ− s̃|) and the above definition of I (0)
δ , the
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integrand in (C 31) is similar to the one in (C 22). Therefore a derivation similar to
that presented following (C 22) results in (II) = α5εn`Θ

1/2∂Θ/∂ri, where

α5 = − 16
√

2

9
√

3π

∫ ∞
0

ds̃

∫ ∞
0

dũ

∫ ∞
0

dũ2

∫ 1

−1

dys̃ũ2ũ
4y2Φ̂c(ũ)

× Φ̂c
(
(ũ2

2 + ũ2y2)1/2
)
Φ̂e
(
(ũ2 − 2ũs̃y + s̃2)1/2

) (
ũ2

2 + ũ2y2 − 5
2

) (
ũ2 − 5

2

)
× e−(ũ2−2ũs̃y+s̃2)e−(ũ2

2
+ũ2y2). (C 32)

The integral in (C 32) has been evaluated numerically. The result is α5 ≈ −0.0016. The
computation of the third and fourth parts is much simpler since the corresponding
integrands do not include a mixture of precollisional and postcollisional velocities.

This fact renders the integrations over k̂ trivial. Hence, using
∫
k̂·ũ12>0

dk̂(k̂ · ũ12) = πu12,
the third part reads, after substituting the forms of ΦK and Φε (cf. (23) and the text
following (30))

(III) =
εnK

2π3

(
2Θ

3

)3/2
∂Θ

∂rj

∫
dũ1dũ2ũ12e

−(ũ2
1
+ũ2

2
)Φ̂e(ũ2)Φ̂

2
c(ũ1)

(
ũ2

1 − 5
2

)2
ũ1iũ1j . (C 33)

Next, using
∫
ũ1·ũ2=ũ1ũ2 cos θ′

d ˆ̃u1d ˆ̃u2ũ
2
1x = 8

3
π2ũ2

1, it follows that (III) = α6εn`Θ
1/2∂Θ/∂ri

where

α6 =
8
√

2

9
√

3π

∫ ∞
0

dũ1

∫ ∞
0

dũ2ũ
4
1ũ

2
2R0(ũ1, ũ2)e

−(ũ2
1
+ũ2

2
) × Φ̂e(ũ2)Φ̂

2
c(ũ1)

(
ũ2

1 − 5
2

)2
. (C 34)

The function Rn is defined as

Rn(ũ1, ũ2) ≡
∫ π

0

dθ′ sin θ′Pn(cos θ′)(ũ2
1 − 2ũ1ũ2 cos θ′ + ũ2

2)
1/2, (C 35)

where Pn(x) is the nth-order Legendre polynomial. Substituting n = 0, one obtains
(Pekeris 1955) (for ũ1 > ũ2): R0(ũ1, ũ2) = 2ũ2

2/3ũ1 + 2ũ1; the value of R for ũ2 > ũ1 is
obtained by exchanging the order of its arguments. The double integral in (C 34) has
been carried out numerically. The result is α6 ≈ 0.0018. The fourth part is calculated

in a similar manner. After integrating over k̂, employing the forms of ΦK and Φε and
using

∫
ũ1·ũ2=ũ1ũ2 cos θ′

d ˆ̃u1d ˆ̃u2ũ1xũ2x = 8
3
π2ũ1ũ2 cos θ′ one obtains (IV ) = α7εn`Θ

1/2∂Θ/∂ri
where

α7 =
8
√

2

9
√

3π

∫ ∞
0

dũ1

∫ ∞
0

dũ2ũ
3
1ũ

3
2R1(ũ1, ũ2)e

−(ũ2
1
+ũ2

2
)

×Φ̂e(ũ1)Φ̂c(ũ1)Φ̂c(ũ2)
(
ũ2

1 − 5
2

) (
ũ2

2 − 5
2

)
, (C 36)

with R1 given by Pekeris (1955) (for ũ1 > ũ2):

R1(ũ1, ũ2) =
2ũ3

2

15ũ2
1

− 2

3
ũ2. (C 37)

The double integral in (C 36) has been evaluated numerically. The result is α7 ≈
−0.0006. Summing all the contributions to QKεi one obtains

QKεi = −κ1

∂Θ

∂ri
− λ1

∂n

∂ri
, (C 38)

where κ1 ≈ 0.1072εn`Θ1/2 and λ1 ≈ 0.2110ε`Θ3/2.
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Next, consider the Kε order of the stress tensor. Following (36) and (C 9), this
contribution to the stress tensor can be written as the sum of three terms: PKε

ij =

PKε
ij1

+ PKε
ij2

+ PKε
ij3

. The first term reads

PKε
ij1

=
2nΘ

3π3/2

∫
dũΦ̂v(ũ)ũiũje

−ũ2

SKε. (C 39)

Symmetry considerations applied to the explicit form of SKε (cf. (C 9)) imply that
only the term proportional to velocity gradients contributes to the integral in (C 39).
Hence, upon substituting (C 9) in (C 39), one obtains

PKε
ij1

=
4εnK

3π3/2

(
2Θ

3

)1/2
∂Vk

∂r`

∫
dũΦ̂v(ũ)ũiũj ũkũ`e

−ũ2

×
((

2

π

)1/2

(Φ̂′v(ũ)ũ
2 − Φ̂v(ũ)(ũ2 − 3)) + 3

2
(Φ̂e(ũ)− Φ̂′e(ũ))

)
, (C 40)

where use has been made of the tensorial identity: aiajTij = aiajTij . Clearly, the
above integral is proportional to an isotropic fourth-order tensor, which is symmetric
with respect to the exchange of pairs (i, j) and (k, `): δijδk` + b(δikδj` + δi`δjk) The

vanishing of the trace of ∂Vk/∂r` implies that the term δijδk` does not contribute
to PKε

ij1
. Each of the other two Kronecker δ yields the same contribution. Hence,

in order to calculate the expression in (C 40) one may choose e.g. i = k = 1 and
j = ` = 2, replace ∂ logΘ/∂r̃j by ∂ logΘ/∂r̃i, and multiply the result by 2. Next,

using
∫

d ˆ̃uũ2
xũ

2
y = 4

15
πũ4, it follows that PKε

ij1
= ζ1εn`Θ

1/2∂Vi/∂rj , where

ζ1 =
32

45

(
2

3π

)1/2 ∫ ∞
0

dũũ6Φ̂v(ũ)e
−ũ2

((
2

π

)1/2

(Φ̂′v(ũ)ũ
2 − Φ̂v(ũ)(ũ2 − 3)) + 3

2
(Φ̂e(ũ)− Φ̂′e(ũ))

)
, (C 41)

Carrying out the integration numerically, one obtains ζ1 ≈ −0.0935.
The second term reads

PKε
ij2

= − 2nΘ

3π3/2

∫
dũΦ̂v(ũ)ũiũje

−ũ2

(Ξ̃ + Λ̃). (C 42)

Upon substituting (C 2) and (C 4) in (C 42), and taking of the derivative with respect
to ε at ε = 0 (cf. the derivation of QKεi2 ) one obtains

PKε
ij2

= − 2εnΘ

3π4
lim
ε→0

∂

∂ε

∫
k̂·ũ12>0

dũ1dũ2dk̂(k̂ · ũ12)e
−(ũ2

1
+ũ2

2
)

× (ΦK(ũ1) + ΦK(ũ2))Φ̂v(ũ
′
1)ũ
′
1iũ
′
1j , (C 43)

where primes now denote postcollisional velocities. Considering the form of ΦK ,
cf. (23), symmetry considerations imply that only the part which is proportional
to velocity gradients contributes to the integral in (C 43). Further simplification is

achieved by renaming ũ′1 as ũ, multiplying the integrand by δ(ũ− ũ1 + q(k̂ · ũ12)k̂) and
integrating over ũ. One obtains

PKε
ij2

= −2εnΘ

3π4
lim
ε→0

∂

∂ε

∫
dũ1dũ2dũe

−(ũ2
1
+ũ2

2
)(ΦK(ũ1) + ΦK(ũ2))Φ̂v(ũ)ũiũjIδ, (C 44)
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where Iδ and q are defined in the above. Next, the expression on the right-hand side
of (C 44) is split into two parts, the first being (after employing the explicit form of
ΦK and using s̃ ≡ ũ− ũ1)

(I) = − 4εKnΘ

3π4

(
3

2Θ

)1/2
∂Vk

∂r̃`
lim
ε→0

∂

∂ε

∫
ds̃dũ2dũe

−(ũ−s̃)2−ũ2
2

× Φ̂v(|ũ− s̃|)Φ̂v(ũ)ũiũj(ũk − s̃k)(ũ` − s̃`)Iδ. (C 45)

An integration over all the orientations of ũ2 (using (D 13)) followed by the application
of tensorial arguments (which imply that one may choose specific directions i = k = 1

and j = ` = 2, replace ∂Vk/∂r` by ∂Vi/∂rj and multiply the result by 2) yields

(I) = − 4εKnΘ

3π4

(
3

2Θ

)1/2
∂Vi

∂r̃j
lim
ε→0

∂

∂ε

4π

q2

∫
ds̃dũ

∫ ∞
| 1−q
q
s̃+ˆ̃s·ũ|

dũ2ũ2

1

s̃
e−(ũ−s̃)2−ũ2

2

× Φ̂v(|ũ− s̃|)Φ̂v(ũ)ũxũy(ũx − s̃x)(ũy − s̃y). (C 46)

Using:
∫
ũ·s̃=ũs̃ cos θ′

d ˆ̃udˆ̃sũxũy(ũx−s̃x)(ũy−s̃y) = 8
15
π2ũ2

(
ũ2 − 2ũs̃ cos θ′+ 1

2
s̃2(3 cos2 θ′ − 1)

)
together with an appropriate shift in ũ2 and the substitution dy ≡ d(cos θ′), then
taking the derivative with respect to ε at ε = 0 and integrating over ũ2, one obtains

(I) = ζ2εn`Θ
1/2∂Vi/∂rj , where

ζ2 = − 32
√

3

45
√

2π

∫ ∞
0

ds̃

∫ ∞
0

dũ

∫ 1

−1

dys̃ũ4
(
ũ2 − 2ũs̃y + 1

2
s̃2(3y2 − 1)

)
× (1− s̃ũy)Φ̂v(

√
ũ2 − 2ũs̃y + s̃2)Φ̂v(ũ)e

−(ũ2−2ũs̃y+s̃2)e−ũ
2y2

(C 47)

The integral has been evaluated numerically. The result is ζ2 ≈ −0.1349. The second
part of PKε

ij2
is

(II) = −4εKnΘ

3π4

(
3

2Θ

)1/2
∂Vk

∂r̃`
lim
ε→0

∂

∂ε

∫
ds̃ dũ2 dũ e−(ũ−s̃)2−ũ2

2Φ̂v(ũ2)Φ̂v(ũ)ũiũj ũ2kũ2`Iδ.

(C 48)
As before we choose specific directions such as i = k = 1 and j = ` = 2, replace

∂Vk/∂r` by ∂Vi/∂rj and multiply the result by 2. Next, upon performing the integration
over the orientations of ũ2 and, using (D 13):∫

d ˆ̃u2ũ2xũ2yIδ =
πs̃xs̃y

q2s̃3ũ2

[
3

(
1− q
q

s̃+ ˆ̃s · ũ
)2

− ũ2
2

]
H

(
ũ2 − |

1− q
q

s̃+ ˆ̃s · ũ|
)
.

One thus obtains

(II) = − 8εKnΘ

3π4

(
3

2Θ

)1/2
∂Vi

∂r̃j
lim
ε→0

∂

∂ε

π

q2

∫
ds̃dũ

∫ ∞
| 1−q
q
s̃+ˆ̃s·ũ|

dũ2

ũ2

s̃3
e−(ũ−s̃)2−ũ2

2

×
[

3

(
1− q
q

s̃+ ˆ̃s · ũ
)2

− ũ2
2

]
Φ̂v(ũ2)Φ̂v(ũ)ũxũys̃xs̃y. (C 49)

Upon using the result:
∫
ũ·s̃=ũs̃ cos θ′

d ˆ̃udˆ̃sũxũys̃xs̃y = 4
15
π2ũ2s̃2(3 cos2 θ′ −1), followed by an

appropriate shift in ũ2, and substituting dy = d(cos θ′) one can perform the derivative
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with respect to ε at ε = 0 to obtain: (II) = ζ3εn`Θ
1/2∂Vi/∂rj where

ζ3 = − 8
√

3

45
√

2π

∫ ∞
0

dũ

∫ ∞
0

dũ2

∫ 1

−1

dyũ2ũ
4(3y2 − 1)(2ũ2y2 − ũ2

2)

×
{
− ũy

[
ũy +

π1/2

2
(1 + 2ũ2y2)eũ

2y2

(1 + erf(ũy))

]

×
[

1−
Φ̂′v
(
(ũ2

2 + ũ2y2)1/2
)

Φ̂v
(
(ũ2

2 + ũ2y2)1/2
) − 2

2ũ2y2 − ũ2
2

]

+ 1 + π1/2ũy eũ
2y2

(1 + erf(ũy))

}
Φ̂v
(
(ũ2

2 + ũ2y2)1/2
)
Φ̂v(ũ)e

−ũ2

e−(ũ2
2
+ũ2y2). (C 50)

The integral in (C 50) has been evaluated numerically. The result is ζ3 ≈ 0.1094. The
third part of PKε

ij is

PKε
ij3

= − 2nΘ

3π3/2

∫
dũΦ̂v(ũ)ũiũj e−ũ

2

Ω̃, (C 51)

where Ω̃ is given in (C 3). Substitution of (C 3) in (C 51) yields

PKε
ij3

= − 2nΘ

3π4

∫
k̂·ũ12>0

dũ1dũ2dk̂(k̂ · ũ12)e
−(ũ2

1
+ũ2

2
)Φ̂v(ũ1)ũ1iũ1j

× (ΦK(ũ′1)Φε(ũ
′
2) + ΦK(ũ′2)Φε(ũ

′
1)− ΦK(ũ1)Φε(ũ2)− ΦK(ũ2)Φε(ũ1)). (C 52)

In (C 52) the relation between the primed and unprimed vectors is given by the elastic
velocity transformation. Transforming the integral as in the derivation of (C 28) from
(C 27), one obtains

PKε
ij3

= − 2nΘ

3π4

∫
dũ1 dũ2 dũe−(ũ2

1
+ũ2

2
)

× (ΦK(ũ1)Φε(ũ2) + ΦK(ũ2)Φε(ũ1))Φ̂v(ũ)ũiũjI
(0)
δ

+
2nΘ

3π4

∫
k̂·ũ12>0

dũ1 dũ2 dk̂(k̂ · ũ12)e
−(ũ2

1
+ũ2

2
)

× (ΦK(ũ1)Φε(ũ2) + ΦK(ũ2)Φε(ũ1))Φ̂v(ũ1)ũ1iũ1j , (C 53)

where I (0)
δ is defined as in the above. Symmetry implies that only the viscous part

of ΦK contributes to the integrals of (C 53). The term PKε
ij3

is split into four parts.
The first is given by (after employing the explicit forms of ΦK and Φε, and using
s̃ = ũ− ũ1)

(I) = −4εKnΘ

3π4

(
3

2Θ

)1/2
∂Vk

∂r̃`

∫
ds̃dũ2dũe

−(ũ−s̃)2−ũ2
2

×Φ̂v(|ũ− s̃|)Φ̂e(ũ2)Φ̂v(ũ)ũiũj(ũk − s̃k)(ũ` − s̃`). (C 54)

Notice that except for the extra term Φ̂e(ũ2) and the definition of I (0)
δ for q = 1,

the integral in (C 54) is similar to the one in (C 45). Hence, performing a similar
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derivation to that following (C 45) one obtains (I) = ζ4εn`Θ
1/2∂Vi/∂rj , where

ζ4 = − 128
√

3

45
√

2π

∫ ∞
0

ds̃

∫ ∞
0

dũ

∫ ∞
0

dũ2

∫ 1

−1

dyũ2s̃ũ
4
(
ũ2 − 2ũs̃y + 1

2
s̃2(3y2 − 1)

)
× Φ̂v

(
(ũ2 − 2ũs̃y + s̃2)1/2

)
Φ̂e
(
(ũ2

2 + ũ2y2)1/2
)
Φ̂v(ũ)e

−(ũ2−2ũs̃y+s̃2)e−(ũ2
2
+ũ2y2). (C 55)

The integral in (C 55) has been evaluated numerically. The result is ζ4 ≈ 0.0015.
The second term reads:

(II) = −4εKnΘ

3π4

(
3

2Θ

)1/2
∂Vk

∂r̃`

∫
ds̃ dũ2 dũ e−(ũ−s̃)2−ũ2

2Φ̂v(ũ2)Φ̂e(|ũ− s̃|)Φ̂v(ũ)ũiũj ũ2kũ2`.

(C 56)
Except for the extra term Φ̂e(|ũ− s̃|) and the definition of I (0)

δ for q = 1, the integrand
in (C 56) is similar to the one (C 48). Hence, following a similar derivation as in the

above, it follows that (II) = ζ5εn`Θ
1/2∂Vi/∂rj , where

ζ5 = − 32
√

3

45
√

2π

∫ ∞
0

ds̃

∫ ∞
0

dũ

∫ ∞
0

dũ2

∫ 1

−1

dys̃ũ2ũ
4(3y2 − 1)(2ũ2y2 − ũ2

2)

×Φ̂e
(
(ũ2 − 2ũs̃y + s̃2)1/2

)
Φ̂v
(
(ũ2

2 + ũ2y2)1/2
)
Φ̂v(ũ)e

−(ũ2−2ũs̃y+s̃2)e−(ũ2
2
+ũ2y2). (C 57)

The integral in (C 57) has been evaluated numerically. The result is ζ5 ≈ 0.0015.

The third term reads (after performing the integral over k̂ and employing the
explicit forms of ΦK and Φε)

(III) =
4
√

3εn`Θ1/2

3
√

2π3

∂Vk

∂r`

∫
dũ1dũ2e

−(ũ2
1
+ũ2

2
)Φ̂2

v (ũ1)Φ̂e(ũ2)ũ1iũ1j ũ1kũ1`. (C 58)

Tensorial arguments allow one to choose specific directions, e.g. i = k = 1 and

j = ` = 2, replace ∂Vk/∂r` by ∂Vi/∂rj and multiply the result by 2. One obtains

(III) =
8
√

3εn`Θ1/2

3
√

2π3

∂Vi

∂rj

∫
dũ1dũ2ũ12e

−(ũ2
1
+ũ2

2
)Φ̂2

v (ũ1)Φ̂e(ũ2)ũ
2
1xũ

2
1y, (C 59)

Next, performing the integration over all the orientations of ũ1 and ũ2, keeping the
angle between them fixed, one obtains:

∫
ũ1·ũ2=const

d ˆ̃u1d ˆ̃u2ũ
2
1xũ

2
1y = 8

15
π2ũ4

1. Using this

result, it follows that (III) = ζ6εn`Θ
1/2∂Vi/∂rj , where

ζ6 =
64
√

3

45
√

2π

∫ ∞
0

dũ1

∫ ∞
0

dũ2ũ
6
1ũ

2
2R0(ũ1, ũ2)e

−(ũ2
1
+ũ2

2
)Φ̂2

v (ũ1)Φ̂e(ũ2). (C 60)

The integral in (C 60) has been evaluated numerically. The result is ζ6 ≈ 0.0010.
The fourth term reads

(IV ) =
4
√

3εn`Θ1/2

3
√

2π3

∂Vk

∂r`

∫
dũ1dũ2e

−(ũ2
1
+ũ2

2
)Φ̂v(ũ1)Φ̂e(ũ1)Φ̂v(ũ2)ũ1iũ1j ũ2kũ2`, (C 61)

and it equals (following similar tensorial considerations)

(IV ) =
8
√

3εn`Θ1/2

3
√

2π3

∂Vi

∂rj

∫
dũ1dũ2e

−(ũ2
1
+ũ2

2
)Φ̂v(ũ1)Φ̂e(ũ1)Φ̂v(ũ2)ũ1xũ1yũ2xũ2y. (C 62)

Performing the integral over all orientations of ũ1 and ũ2 while keeping the angle

between them, θ′, fixed, yields
∫
ũ1·ũ2=ũ1ũ2 cos θ′

d ˆ̃u1d ˆ̃u2ũ1xũ1yũ2xũ2y =
4π2ũ2

1
ũ2

2

15
(3 cos2 θ′ − 1).
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It follows that (IV ) = ζ7εn`Θ
1/2∂Vi/∂rj where

ζ7 =
64
√

3

45
√

2π

∫ ∞
0

dũ1

∫ ∞
0

dũ2ũ
4
1ũ

4
2R2(ũ1, ũ2)e

−(ũ2
1
+ũ2

2
)Φ̂v(ũ1)Φ̂v(ũ2)Φ̂e(ũ1), (C 63)

and R2 is given by (for ũ1 > ũ2) R2(ũ1, ũ2) = 2ũ4
2/35ũ3

1 − 2ũ2
2/15ũ1. The integral has

been evaluated numerically. The result is: ζ7 ≈ −0.0003. Summing all contributions
to PKε

ij one obtains that

PKε
ij = −2εµ1n`Θ

1/2 ∂Vi

∂rj
, (C 64)

where µ1 ≈ 0.0576.

Appendix D is available on request from the authors or the JFM Editorial Office.

Appendix E is available on request from the authors or the JFM Editorial Office.
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